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Abstract

The design parameters of a Time-of-Flight (TOF) neutron spectrometer composed

of BCF-12 plastic scintillating fibers were investigated. A GEANT4 transport model

was developed for analyzing the interaction of 2.5 MeV neutrons with a 14×14 BCF-

12 fiber bundle. The bundle simulation demonstrated that 0.359% of all neutrons

incident on the bundle will double scatter. The timing and data collection efficien-

cies of a Tektronix DPO7104 series digital oscilloscope were examined to determine

the signal processing requirements for future fiber bundle measurements. The min-

imum detectable neutron energy was computed by taking into account the bundle

scintillation efficiency, light collection efficiency, photodiode quantum efficiency, and

quenching. For a BCF-12 fiber coupled to dual-readout Hamamatsu S10362-11-025C

series Silicon Photomultipliers (SiPMT), the minimum detectable neutron energy was

calculated to be 300−700 keV, depending on the fiber cladding and geometry. The

spatial and timing uncertainties were set to 1 mm and 0.1 ns, respectively, to de-

termine the overall energy uncertainty associated with a TOF neutron spectrometer.

The uncertainties of 1 mm and 0.1 ns were chosen as the optimal capabilities of the

the SiPMT and digital oscilloscope. Finally, analysis of a SiPMT in a light-tight box

was performed to validate dark counts, determine light leakage and other detection

system background noise. An experiment involving a 14 × 14 BCF-12 fiber bundle

connected to dual-readout SiPMTs is recommended for future research to compare

to the GEANT4 double scatter event probability.
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TIMING AND SPECTROSCOPY REQUIREMENTS FOR A

PLASTIC SCINTILLATING FIBER BUNDLE TIME-OF-FLIGHT

NEUTRON SPECTROMETER

I. Introduction

Preventing the proliferation of special nuclear material (SNM) is a global initia-

tive requiring ingenuity in the field of radiation detection. Neutron detection plays

an important role in this effort. There are many advantages to using neutron detec-

tion technologies over other radiation detection systems. Neutrons provide unique

fission signatures and are capable of penetrating materials which otherwise easily ab-

sorb gamma rays. Border crossings and portal monitors use helium-3 based neutron

detectors, but since the supply of helium-3 is diminishing there is demand for other

neutron detection technologies. Some of the challenges of neutron detection include

low neutron energy detection, which affect scintillation detectors; the neutrality of

neutrons, which renders electric fields useless in directing neutrons towards a detec-

tor; and background noise, which is created by alpha and beta particles as well as

high-energy photons.

1.1 Motivation

There is considerable interest in radiation detection by the United States. The

ever present danger of terrorists obtaining SNM is of the highest concern. Technolo-

gies which could help to detect, find, and rapidly identify SNM with high confidence

are in constant demand. Current technologies such as gas-filled proportional detec-

tors can accomplish some of this, however, more efficient and elementary methods
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are sought to improve the SNM prevention and detection process. Government agen-

cies such as the Defense Threat Reduction Agency (DTRA) research and develop

radiation detection technologies such as stand-off detectors, helium-3 replacement

materials, and new organic scintillator detectors as a means to find radioactive ma-

terials in the United States or abroad. There are various types of neutron detectors

which include gas proportional detectors, scintillation neutron detectors, semicon-

ductor neutron detectors, neutron activation detectors, and fast neutron detectors,

all of which afford advantages and disadvantages. Gas-filled proportional detectors

are optimal for neutron count rate, but are limited as energy spectrometers. Liquid

organic scintillators are used for fast neutron applications and have pulse discrimina-

tion capabilities, but they lack in low thermal neutron efficiency and are susceptible

to radiation damage effects. Semiconductor neutron detectors are only used for high

neutron flux monitoring due to the crystal size limitations and low overall detection

efficiencies. Developing a neutron-sensitive scintillating fiber optic bundle detector

would provide great potential in modular placement of portable neutron detectors at

ports and international border crossings to monitor imported goods and materials [1].

1.2 Background

The development of scintillators as a means of radiation detection trace back

to the spinthariscope, which was first built in 1903 by Sir William Crookes. The

spinthariscope featured a ZnS screen, which produced scintillations visible to the

naked eye when viewed by a microscope in a dark room. While, this was a corner-

stone in scintillator technology, this method was extremely tedious. It would take

another four decades (1944) before Curran Baker brought scintillator technology out

of naked eye measurement to more modern methods with the development of the

photomultiplier tube (PMT) [1]. Development of scintillators progressed for a multi-
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tude of reasons which included linearity, speed, density, transparency, and favorable

costs to manufacture [1]. Over time scintillators have transformed from the ZnS of the

early years to organic scintillators composed of aromatic hydrocarbon compounds and

inorganic crystals composed of alkali metal halides. Eventually, with the advances in

scintillator technology these organic and inorganic scintillators reduced the typically

large cylinder and block geometries down to small scale (i.e. fractions of a millimeter)

diameter fibers. Fiber optics have the advantages of transferring light and informa-

tion over long distances with extreme flexibility. This advance in small diameter fiber

scintillator technology led to this research on large scintillating fiber bundles. The

possible advantages of a large fiber bundle as opposed to a single large block scin-

tillator (of approximately the same size) includes better flexibility, efficiency, timing,

and position resolution in developing novel Compton camera detectors capable of

detecting special nuclear material.

1.3 Objectives

This research is focused on investigating the timing and spectroscopy requirements

of a time-of-flight (TOF) neutron spectrometer. There are five research objectives,

which are comprised of experiments, simulations, and parametric studies. The first

objective is to understand the light production and collection processes in a sin-

gle fiber optic cable. This process can be analyzed using the Geometry and Tracking

(Geant4) particle interaction model by modeling a single bulk continuous fiber (BCF),

specifically Saint-Gobain’s BCF-12 plastic scintillating fiber (PSF), and incorporat-

ing all pertinent optical, absorption, emission, and other material properties into the

model. The model can then simulate the fiber subjected to optical photon and neu-

tron sources to record neutron scattering, energy deposition, and ray tracing which

can help determine how the BCF-12 could respond to an experiment setup similar
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to the simulation. The second objective will expand the single fiber simulation to

a 14 × 14 BCF-12 plastic scintillating fiber bundle array to understand the interac-

tion of radiation in a bundle, how the radiation produces light, and how the light

appears as a quantitative signal that can be used to estimate the properties of the

neutron that induced the signal. The third objective is to understand the timing and

resolution requirements necessary for a functional spectrometer to provide optimal

results. The results are considered optimal if they have less than ten percent relative

error. By setting bounds on spatial and timing resolution an approximate region or

domain of operation for optimal use of the proposed TOF neutron spectrometer can

be determined. The fourth objective is to understand the signal processing require-

ments required for a functional spectrometer. These requirements include the dead

time of the digital oscilloscope used for fast digital data acquisition of the detection

system. Since, a digital oscilloscope will be utilized in reading, saving and writing the

pulses produced from the silicon photomultiplier (SiPMT), the oscilloscope needs to

be fast enough to resolve coincident pulse events on the picoseconds to nanosecond

time scale. The final objective is to experimentally determine the minimum spatial

resolution that can be achieved with a scintillating fiber optic cable. Related previous

work by other investigators is briefly described in the next section.

1.4 Literature Review

Research into plastic scintillating fibers has been performed throughout the past

twenty years [2] [3] [4] [5]. These experiments include efforts to understand “quench-

ing” effects, increase neutron scattering cross-sections, and determine spatial resolu-

tion. Since this research focuses on the spatial and timing characteristics desired in a

proposed novel TOF neutron spectrometer, the results of efforts to determine spatial

resolution, experimental set-ups, and the results of similar experiments were sought.
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Only a few of the more relevant efforts are described in this section.

Understanding the spatial resolution of BCF-12 fibers, or any plastic scintillating

fiber, is crucial in implementing the fiber in a TOF neutron spectrometer. Takada et.

al., performed a series of experiments to determine two linear relations [5]. The first

was the relationship between the incident position of the neutrons and the change in

time with which each photomultiplier tube responded to the incident light created

by the neutron scatter. When the neutron beam was focused on different positions

along the scintillating fiber a change in the PMT response time was observed. The

second was the relationship between the neutron flux level and the counting rate. In

their research they used BCF-20, which is similar to the BCF-12, differing only in

wavelength emission and attenuation length. Saint-Gobain produces plastic scintil-

lating fibers, designated as BCF, that emit in the blue or green with peak emissions

between 430-530 nm and attenuation lengths ranging from 2.2−3.5 meters. Takada

et. al. used a 1−2 MeV peak energy reactor neutron source and collimated the fast

neutron beam down to a 5 cm diameter that was directed onto a single 1 mm di-

ameter BCF-20 fiber. The fiber was connected directly to two photomultiplier tubes

(PMT), with preamplifiers, a constant fraction discriminator (CFD), and a single

time to amplitude converter (TAC), which fed into a pulse height analyzer (PHA).

The results of this experiment determined the best achievable spatial resolution for

a 1 mm diameter, 100 meter long, green emission fiber was approximately 16 cm.

In this research, the hope is to obtain better spatial resolution on the order of one

centimeter or less by making changes to the detection system setup featured in the

research by Takada et. al. The first change is to use shorter length fibers, which will

cause less attenuation of light. The second change is to utilize SiPMTs instead of

PMTs for higher quantum efficiency.

Much of the research performed in this thesis stems from prior work carried out by
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Gearhart in his Air Force Institute of Technology (AFIT) M.S. thesis titled, “Investi-

gation of BCF-12 Plastic Scintillating Coherent Fiber Bundle Timing Properties” [2].

Gearhart worked with BCF-12 plastic scintillating fibers and developed a model of

the BCF-12 fiber bundles exposed to a neutron source in the Monte Carlo N-Particle

Transport Code (MCNP5). His model provides a comparison for my simulation of

a 14 × 14 BCF-12 bundle created in Geant4. The MCNP5 model was simulated for

various sized arrays of fibers from a single fiber up to a 100 × 100 BCF-12 bundle.

The MATLAB script used to control the Tektronix DPO7104 digital oscilloscope for

fast digital data acquisition written by Gearhart was used in this research with only

a few minor adjustments. Other information provided by Gearhart’s research was

background theory on scintillators, the techniques used in creating a BCF-12 fiber

bundle, and the light-tight containers used for performing the initial light sensitive

experiments.

Jones’ thesis titled, “Investigation of YAG:Ce Scintillating Fiber Properties Using

Silicon Photomultipliers” provided valuable documentation and information to the

development of this research [3]. The research used the attenuation lengths to con-

duct position-of-interaction (POI) measurements to determine the achievable position

resolution of Yttrium Aluminum Garnet doped with Cerium (YAG:Ce) fibers using

dual-readout SiPMTs. The results obtained were compared to theoretical calculations

and Monte Carlo simulations. His research provided information on related theory,

SiPMT design and calibration, the construction of two jigs for holding two SiPMT

circuit boards for dual-readout of a single plastic scintillating fiber, and experimen-

tation using dual-readout data collection. Jones’ research was focused on inorganic

scintillating fibers as opposed to this research which focuses on the BCF-12 plastic

fiber, which is an organic scintillating fiber.
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1.5 Thesis Outline

This thesis presents the background, theory, methodology, experimentation, re-

sults, and analysis pertaining to the timing and spectroscopic parameters of a time-

of-flight plastic scintillating fiber neutron spectrometer. It is divided into the follow-

ing chapters: Chapter II - theory associated with the scope of organic scintillators,

neutron kinematics, scintillating fibers, BCF-12 plastic scintillating fibers, photon de-

tection, digital data acquisition, and spatial/timing resolution; Chapter III - method-

ology and experimentation performed during this investigation of BCF-12 plastic

scintillating fiber time-of-flight neutron spectroscopy design parameters; Chapter IV

- results and analysis of the simulations, experiments, and parametric studies; and

Chapter V - conclusions and recommendations.
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II. Theory

This chapter will present the theory pertaining to a dual-readout silicon photo-

multiplier scintillating fiber detection system. This system is comprised of a plastic

scintillating fiber(s), silicon photomultipliers, charge sensitive preamplifiers, and a

digital oscilloscope for fast data acquisition. As a suitable background information

resource, interested readers may find it beneficial to review the scintillation mech-

anisms for organic or inorganic scintillators, which is described in detail in Knoll’s

Radiation Detection and Measurement [6]. The theory presented first addresses or-

ganic scintillator properties pertaining to light output, time response, and photon

transport. Afterward, information on neutron kinematics is presented. Scintillating

fibers are discussed with a focus on light capture and propagation, scintillation yield

estimation, and position/energy resolution estimation, with an emphasis on BCF-12

plastic scintillating fiber properties and characteristics. Photon detection techniques

using photomultiplier tubes and silicon photomultipliers are explained with the bulk

of the attention given to silicon photomultipliers. Then, digital data acquisition as

the preferred method for data collection is presented. Finally, the theory chapter

will conclude with spatial and timing resolution as it pertains to how the uncertainty

affects the energy calculation of a proposed TOF neutron spectrometer.

2.1 Organic Scintillators

The scientific field of scintillators is comprised of two main categories of scintil-

lators, organic and inorganic. Organic-based scintillators are comprised of liquids

or plastics with low density and low atomic number (i.e. Z number). The light

output generated by organic scintillators is low and non-linear, while the hydrogen

content is typically high, thus well suited for fast neutron detection. Other character-
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istics of organic-based scintillators include fast decay times and the ability to perform

pulse-shape discrimination between different types of particles. Inorganic-based scin-

tillators are comprised of alkali halides, glasses and cerium-activated fast inorganic

compounds. These types of scintillators differ from the organic-based scintillators

in that they have high density and high atomic number. Compared to the organics

they have higher and more linear light output, but slower decay times. This research

focuses on organic-based plastic scintillating fibers and this section focuses on the

light output and time response of organic scintillators, as well as photon transport.

2.1.1 Light Output of Organic Scintillators.

When incident radiation interacts with a scintillation material the majority of

kinetic energy will be converted into heat. The small fraction of the total particle

energy that isn’t converted into heat and is instead converted into light is commonly

known as the scintillation efficiency. The scintillation efficiency of the material is

dependent on the type of particle and its energy. Electrons interacting with organic

scintillators result in a linear response for energies up to 125 keV [6]. Heavy charged

particles (e.g. alpha particles and protons) generate a smaller response when com-

pared to electrons of the same energy. Another difference in heavy charged particle

and electron interactions is the former demonstrates non-linearity up to larger energy

thresholds. Although the responses of the two types of particles become similar as

particle energy increases, the proton response will always be less than an equivalent

energy electron response.

Organic scintillators commonly use the mega-electron volt electron equivalent

(MeVee) term to describe the absolute light yield obtained by the scintillator to

allow for direct comparison of scintillation yield across different impinging radiation

particles. The energy required to generate 1 MeVee of light by definition is 1 MeV
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for fast electrons and several MeV for heavy charged particles due to their reduced

light yield per absorbed quantity of energy [6]. Since organic scintillators typically

are hydrogen rich, incident heavy charged particles and neutrons interacting with the

organic scintillator will generate a recoil proton. The energy distribution of a recoil

proton from incident monoenergetic neutrons is well known and shown in Figure 1.

90o 75o 60o 45o 30o 15o 0o = θ 

Figure 1. The energy distribution of a recoil proton, EP , produced by monoenergetic
neutrons. For scattering from hydrogen, EP is equivalent to ER. Reproduced with
permission from Knoll [6].

The relationship between the fluorescent energy emitted per unit path length,

dL/dx, and the specific energy loss for the incident charged particle, dE/dx, provides

the initial foundation for describing the response of organic scintillators to charged

particles. A relationship founded on the assumption that a high ionization density

in the path of the particle produces quenching effects, due to the molecular structure

incurring damage, and the resulting lowering of the scintillation efficiency is proposed

by Birk [7]. This relationship postulates that the density of the molecular damage
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from the particle along its trajectory within the scintillator and the ionization density

are directly proportional. This direct relationship is represented by

dL

dx
=

S dE
dx

1 + kB dE
dx

, (1)

where, dL/dx is the emitted fluorescent energy per unit path length, S is the typical

scintillation efficiency, dE/dx is the incident charged particle’s specific energy loss,

B is a proportionality constant, and k is the fraction of the ionization density which

will cause quenching [7].

Additional mechanisms for sizable reductions in light yield in a scintillator in-

clude prolonged exposure to ionizing radiation, light, and oxygen. Degradation of the

optical properties of organic scintillators is a result of the scintillator’s exposure to

ionizing radiation, while the over exposure of organic scintillators to light and oxygen

typically induce slow polymer deterioration. Physical scratches and abrasions on the

surface of organic scintillators, as well as other deformations to the surface from ex-

posure to adverse and harsh environments, also cause degradation in the light yield

due to the decrease in efficiency for internal light reflection.

The sum of all these factors of quenching, over exposure, and physical deformity

are used to explain the reduction of light yield from organic scintillators. Each of

these factors causes the initial scintillation yield within the scintillator to decrease as

optical photons traverse the scintillator. Some of these factors are easy to quantify,

while others will be unmeasurable and result in error.

2.1.2 Time Response of Organic Scintillators.

Organic scintillators will fluoresce and phosphoresce when de-exciting. Determin-

ing the response time profile requires making two assumptions. The first assumption

is that the organic molecule instantaneously reaches the fluorescent states, and the
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second assumption is that in this same organic molecule the only light response ob-

served is prompt fluorescence. Applying these initial assumptions a time profile of

the associated light pulse will be a very fast leading edge, for the rise time, followed

by a simple exponential decay, for the fall time. This response pulse is described by

I = I0 e
−t/τ , (2)

where, I represents the prompt fluorescent intensity of light at time t following exci-

tation, I0 is the initial fluorescent intensity, and τ represents the fluorescence decay

time. However, more detailed representations of the time dependence of the scintil-

lation yield take into account additional effects. These additional effects include the

amount of time required to fill the luminescent states and the delayed fluorescence

and phosphorescence. If the assumption is made that the filling of the optical levels

is exponential the relationship in Equation 2 is modified to

I = I0

(
e−t/τ − et/τ1

)
, (3)

where, in addition to the variables in Equation 2, τ1 is the time constant for the filling

of the optical levels. Other models assume the relationship is better represented by a

Gaussian function, f(t), and further characterized by a standard deviation, σET , the

overall shape of the light pulse is given by

I

I0

= f(t) e−t/τ . (4)

Typically the rise and fall of the light output can be determined from experi-

ments where the full width at half maximum (FWHM) of the resulting light versus

time profile is carefully measured using very fast timing equipment and procedures.

While equipment capable of nanosecond time scales to discriminate pulses is practi-
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cal, time scales of picoseconds is more favorable. Common practice has dictated the

performance (i.e. resolution) of ultrafast organic scintillators by their FWHM time,

instead of the decay time. Faster decay times for scintillators is advantageous in most

scintillator applications, except when the goal is to use pulse shape discrimination to

distinguish between different radiation particles (e.g. alphas, neutrons, and gammas).

2.1.3 Photon Transport in Scintillators.

After the creation of the photons in the scintillator material, it is necessary to

address the transport of these optical photons from creation through the scintillator.

Absorption of the optical photons within a scintillator is primarily caused by impu-

rities and point defects in the crystalline lattice. Other defects, which cause optical

photon transport inefficiencies include air gaps, cracks, and rough surfaces. These

optical impurities are a result of the crystal growth techniques implemented in the

creation of the scintillator.

Scintillation photon transport is most easily described by reflections and refrac-

tions. The creation of the scintillation photons is considered isotropically distributed

and randomly polarized. Snell’s Law describes the reflection and refraction of light

at the boundaries and interfaces of two different media. The relationship between the

two materials at the boundary surface is given by

n1 sin (θ1) = n0 sin (θ0) , (5)

where, subscripts ‘0’ and ‘1’ denote the two materials, ni is the refractive index of

the material, and θi is the angle measured from the normal of the media interface.

The subscript ‘0’ denotes the current material the photon is traversing through, while

subscript ‘1’ denotes the next material with which the photon could reflect or traverse

through if refraction occurs. The index of refraction is defined as the ratio of the speed
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of light in a vacuum to the speed of light in the material. Most organic scintillators

have an index of refraction ranging from 1.4−1.6, which makes for a good interface

coupling with photomultiplier tubes or silicon photomultipliers. The majority of

photodetectors have some form of optical coating (e.g. glass, n ≈ 1.5) for protection.

With both materials having similar indices of refraction, the light is less likely to

internally reflect.

The phenomena of internal reflection occurs when the photon travels from a ma-

terial with a higher refractive index to a material with a lower refractive index. This

presents an issue in the transfer of optical photons from the scintillating material

to the photodetector, and is more prevalent in activated inorganic scintillators than

organic scintillators. There is an angle at which point all optical photons are totally

reflected back into the material, which is known as the critical angle (θC), defined by

θC = sin−1

(
n1

n0

)
, (6)

where, the equation defines an optical photon traveling from material ‘0’ to material

‘1’. The initial material containing the optical photon requires a refractive index

(n0) that is greater than the second material refractive index (n1) for total internal

reflection to occur. An illustration of the two situations of optical photon transport at

a dissimilar material interface is provided in Figure 2. The leakage and total internal

reflection of optical photons occurs at two critical and differing boundaries. The first

is at the interface between the scintillator core and the optical cladding where the

majority of optical photons will leak out. The second, is the at the interface between

the scintillator core fiber ends and the photosensor lens (i.e. window). In the latter of

the two, it is desired to lose optical photons from the fiber core into the photosensor

window. This is called optical photon “escape” in this research, where the escaping

optical photons are measured by the detection system.
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Surrounding Material 

(refractive index = n1) 

Scintillator Material 

(refractive index = n0) 

Ray ‘A’ Ray ‘B’ 

Figure 2. The two conditions at the interface/boundary of two dissimilar materials,
where the scintillator material (denoted by ‘0’) has a greater refractive index than the
surrounding material (denoted by ‘1’). The first ray and incident angle is given at
the critical angle, θC , and is used for visual reference for the two following situations.
Ray ‘A’ has an angle, θA, which is less than the critical angle; resulting in a Fresnel
refraction of the optical photon into the surrounding material. Ray ‘B’ has an angle,
θB, which is greater than the critical angle; resulting in total internal reflection. The
interface conditions and results are reproduced with permission from Knoll [6].

The two conditions for the optical photon traversing from one material to the other

are both desired for different reasons in the scintillation system. The condition where

the optical photon is completely internally reflected is best suited for the scintillator

core and cladding material boundary to “pipe” light down the axial length of the

fiber to the ends for collection by a photosensor. The collection of the scintillation

photons by the photosensor requires the condition where the scintillation photon

trajectory is less than the critical angle (θC), with respect to the normal of the

boundary interface, hence the photon is able to leave the scintillator material and enter

the surrounding material. The ability of photons to escape the scintillator and enter

the photosensor increases the detection efficiency of the scintillator and photosensor

system. If scintillation photons reflect off the photosensor window and internally

reflect, then scintillation photons can travel between the fiber ends bouncing from one

end to other until they leak, escape, or undergo re-absorption. These reflections may
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appear to be new scintillation creation events, when measured by the photosensor.

The discrimination of true scintillation events from these potential reflections in-

volves two different methods. The first is pulse height discrimination and the the

second is time discrimination. For pulse height discrimination, the majority of scin-

tillation photons that are totally internally reflected down the scintillator toward

the ends will exit and escape the scintillator into the photosensor, thus providing a

large pulse response on the readout. A delayed and smaller pulse response, “reflected

pulse,” is produced from the photosensor’s collection of a few scintillation photons

which are reflected from the scintillator-photosensor interface. This smaller and de-

layed pulse is composed of only a few photons, which is on the same order of pulses

produced by the detection system, environment, and background noise. All acquired

data requires pulse height discrimination in the post-processing of the data.

The time discrimination method involves calculating the expected time it takes

for a scintillation event to reach each end of the fiber, which will differ depending on

the location of the scintillation photon creation, and comparing this to the time it

takes the reflected scintillation photon to travel. The time it takes the photons to

travel from origination to a photosensor is used for comparison to the time it takes the

“reflected photons” to travel from one end of the plastic scintillating fiber to the other

end and enter the same photosensor. The time it takes for the scintillation photons to

travel to the ends of the scintillator and escape or reflect can be calculated from a few

relations involving the velocity of light, refractive index, and length of the scintillator

material. The relationship is given by combining the equations which define velocity

and the refractive index, Equations 7 and 8, respectively,

v =
dx

dt
, (7)

where, v is the velocity of the scintillation photon, dx is the length of the scintilla-
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tor, and dt is the time it takes the scintillation photon to travel the length of the

scintillator; and

n =
c

v
, (8)

where, n is the refractive index of the scintillator material and c is the speed of light

in a vacuum. Combining these equations and replacing dx and dt with x and t,

respectively for simplicity, provides the final relationship to determine the time it

takes an optical photon to reflect from one end of the scintillator and travel to the

opposite end,

v =
x

t
=
c

n
,

t =
xn

c
.

(7)

Since the time scales required in time-of-flight neutron spectroscopy using plastic

scintillating fibers is on the order of 102−103 of picoseconds, the reflections may not

be of concern if the length of the fiber is long enough. For short length fibers the

reflections will require less time to travel the full length of the fiber, thus potentially

broadening further the pulse response by the photosensor (i.e. increase in energy

uncertainty). This will especially occur in scintillation induced events created at the

fiber ends closest to the photosensors due to the smaller time separation between

the original photons and “reflected photons” reaching the opposite end photosensor.

However, if the fibers are long enough, then the reflections will require a longer period

of time, thus mitigating the concern of receiving a broadened pulse response. For

instance, using Equation 7 for a plastic scintillating fiber with a refractive index of

n = 1.60 and a fiber length of x = 30 cm; the time (t) it takes for a scintillation photon

to reflect off of a photosensor window and travel from one end to the other would be

approximately 1.6 ns. For every additional 10 cm of plastic scintillating fiber length,
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with the same properties, it takes an additional ∼0.5 ns for the reflected scintillation

photons to travel. These issues should be taken into consideration when determining

scintillating fiber length for time-of-flight spectroscopy detection applications.

This method of time discrimination is also applied to neutron scatters. Time-of-

flight neutron spectrometers must be capable of discriminating between successive

neutron scatters. If the velocity of the neutron is known (derived from the neutron

energy), then Equation 7 can be used to determine the time between scatters of

varying distance. The same is then applied for determining the distance between

successive neutron scatters based on varying the time. These calculations are the

basis of analyses to determine potential spatial and timing resolution requirements

for a TOF neutron spectrometer, which is discussed in greater detail in Section 2.7.

2.2 Neutron Kinematics

Fast neutron detection most commonly uses the method of scattering of neutrons

by light nuclei (e.g. hydrogen, deuterium, or helium) [8]. A recoil nucleus is generated

when a portion of an incident neutron’s kinetic energy is transferred to the target

nucleus. Hydrogen is the preferred target nuclei due to its superior energy transfer

characteristics. Hydrogen is able to receive all of an incident neutron’s kinetic energy.

When the target nuclei are light, the recoil nucleus behaves much like a proton or

alpha particle in the way that it loses energy in the detector medium [9].

Using conservation of momentum and conservation of energy equations to describe

the kinematics of an incident neutron upon a target nucleus produces some simple

equations and relationships. Equation 9 utilizes the variables contained within Ta-

ble 1. Figure 3 provides a schematic to visually describe the relationship between an

incident neutron, target nucleus, and recoil neutron.

For incoming non-relativistic neutrons (i.e. En << 939 MeV) the relation for the
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Table 1. Variables and their definition used in the kinematics of neutron elastic scatter-
ing for both laboratory and center-of-mass coordinate systems. The table is reproduced
with permission from Knoll [6].

Variable Definition

A Mass of the target nucleus/neutron mass
En Incident neutron kinetic energy (laboratory coordinate system)
ER Recoil nucleus kinetic energy (laboratory coordinate system)
Θ Scattering angle of neutron (center-of-mass coordinate system)
θ Scattering angle of recoil nucleus (laboratory coordinate system)

Center-of-Mass System 

Incident 
Neutron 

Scattered 
Neutron 

Recoil 
Nucleus 

Target 
Nucleus 

 

Laboratory System 

Incident 
Neutron 

θ 

Scattered 
Neutron 

Recoil 
Nucleus 

Target 
Nucleus 
(at rest) 

Θ  

Figure 3. The two coordinate systems: (Left) Center-of-Mass and (Right) Laboratory
used to describe and depict neutron kinematics. The coordinate systems are reproduced
with permission from Knoll [6].

energy of the recoil nucleus in the center-of-mass coordinate system is given by

ER =
2A

(1 + A)2
[1− cos(Θ)]En . (9)

To convert to the laboratory coordinate system in which the original target nucleus

is at rest, to the center-of-mass coordinate system, we use

cos(θ) =

√
1− cos(Θ)

2
. (10)
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Combining Equations 9 and 10 gives the relation for the recoil nucleus energy in terms

of its own angle of recoil

ER =
4A

(1 + A)2
[cos2(θ)]En . (11)

From Equation 11 the energy of the recoil nucleus is uniquely determined by the

scattering angle. For a scattering angle in which the target nucleus is slightly grazed

by the incident neutron (i.e. θ ∼= 90 deg), the recoil energy approaches zero. On the

other hand, a head-on collision between the incident neutron and the target nucleus

(i.e. θ ∼= 0 deg) results in the maximum possible recoil energy

ER

∣∣∣
max

=
4A

(1 + A)2
En . (12)

Using Equation 12, the maximum fraction of incident neutron energy that can be

transferred to a recoil nucleus can be calculated for various target nuclei as in Table 2.

The general trend, as expected, of the maximum fractional energy transfer decreases

as the target nucleus mass increases. This demonstrates why hydrogen is desired in

the creation of a neutron detection system based on elastic scattering.

Table 2. Maximum fractional energy transfer in neutron elastic scattering, which is
reproduced with permission from Knoll [6].

Target Nucleus A
ER
En

∣∣∣∣
msx

=
4A

(1 + A)2

1
1H 1 1
2
1H 2 8/9 = 0.889
3
2He 3 3/4 = 0.750
4
2He 4 16/25 = 0.640
12
6 C 12 48/169 = 0.284
16
8 O 16 64/289 = 0.221
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The energy distribution of recoil nuclei are distributed between a minimum of zero

and a maximum value (i.e. the entire energy of the incident neutron), which is shown

in Table 2. If we assume that all scattering angles are possible, a continuum of recoil

energies between these two extremes is expected. If σ(Θ) is defined as the differential

cross section in the center-of-mass system, the probability that the neutrons will be

scattered into dΘ about Θ is given by

P (Θ) dΘ = 2π sin(Θ) dΘ
σ(Θ)

σs
, (13)

where, σs is the total scattering cross section integrated over all angles. While the

distribution in recoil nucleus scattering angle can be helpful, the distribution in recoil

nucleus energy is of greater importance. The distribution of recoil nucleus energy can

be obtained if we let P (ER) dER represent the probability of creating a recoil with

energy dER about ER. This results in the following relationship

P (ER) dER = P (Θ) dΘ . (14)

By simply substituting Equation 13 into Equation 14 the resulting relationship pro-

vides the expected recoil energy based on the recoil nucleus scattering angle

P (ER) = 2π sin(Θ)
σ(Θ)

σs
· dΘ

dER
. (15)

Close observation of Equation 15 shows the recoil energy continuum does in fact

have the same shape as the differential cross section, σ(Θ) as a function of the scatter-

ing angle. Most target nuclei will preferentially forward or backward scatter, which

is confirmed by the distribution of σ(Θ). When the target nuclei is hydrogen, the

scattering process becomes isotropic, for the center-of-mass system. The expected

proton recoil energy distribution, as was shown earlier in Figure 1, is a rectangular
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area extending from zero to the incident neutron total energy. Since the BCF-12

fiber is a hydrogen rich material, it is expected that bombarding this material with

neutrons will yield a response function similar to Figure 1.

2.3 Scintillating Fibers

This section will discuss the characteristics and properties of scintillating fibers

as there are some inherent differences in behavior from other scintillators, mostly

attributed to geometric characteristics. The science of fiber optics deals with the

transmission or guidance of light (rays of waveguide modes in the optical region of the

spectrum) along transparent fibers of glass, plastic, or a similar medium [10]. Fiber

scintillators are highly sought for high-energy particle tracking experimentation due to

their inherently achievable two dimensional position when also coupled with pixelated

detectors. Scintillating fibers range in size from 0.25−1 mm in diameter, shaped in

geometries (typically circular or square cross-sections) conducive to ray propagation,

and are made of plastic or glass because of their favorable optical properties.

2.3.1 Light Capture and Propagation.

Incident radiation that generates a scintillation event within a plastic scintillating

fiber produce scintillation photons. These photons traverse the fiber with only a small

fraction of them successfully reaching the ends of the fiber. The portion of the initial

scintillation photons which reach the end is inversely proportional to the ratio of scin-

tillator core and cladding refractive indices. Using the solid angle subtended within

the fiber and bounded by the cone angle, which determines complete total internal

reflection, provides the initial relationship to determine the fraction of scintillation

photons trapped within a scintillating fiber,
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FT = 2 · Ω

4π
=

1

2π

∫ 2π

0

dφ

∫ π−θc

0

sin(θ) dθ

= 1− cos(π − θc) = 1− sin(θc)

= 1− nclad
ncore

,

(16)

where, FT is the fraction of light trapped within the scintillating fiber, φC is the cone

angle which is measured with respect to the fiber axis, Ω is the solid angle subtended

by the cone angle (φC), and θC is the critical angle which is measured with respect to

the normal of the scintillator fiber core and cladding interface. Figure 4 is provided

later in this section as an aid in identifying the difference between the cone angle, φC ,

and the critical angle, θC .

A close inspection of the refractive indices ratio in Equation 16 shows the trapping

efficiency can be increased by increasing the scintillator core refractive index and/or

decreasing the scintillator cladding refractive index. Increased detection of incident

radiation (e.g. alphas, gammas, and neutrons) by a scintillating fiber requires the

highest total internal reflection to occur within the fiber until the scintillation photons

reach the fiber ends. When the scintillation photons reach the end of the fiber they

must escape the fiber, instead of internally reflecting, to enter the photosensor for

measurement. The BCF-12 fiber, like most scintillating fibers, has a high cladding-

to-core refractive index ratio. According to the scintillation products brochure, Saint-

Gobain claims a cladding and core refractive index of 1.49 and 1.60, respectively,

which equates to a ratio of 0.931 [11]. A large cladding-to-core refractive index ratio

produces large critical angles (i.e. small critical cone angle), which reduces the amount

of trapped light within the fiber from a radiation induced scintillation event. The large

critical angle and consequently low trapping efficiency, which is on the order of 3−4%,

provides the desired condition to allow scintillation photons to escape the ends of the

fiber and produce a measured result from the photosensor.
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A photosensor can only measure light that enters the detection window. For a

photon to escape the scintillating fiber core and enter the photosensor requires the

scintillation photon to have a trajectory that increases the probability of escape. If

the scintillation photon reaches the fiber end with an angle less than or equal to the

trapped photon cone angle (i.e. critical cone angle, φC) then the scintillation photon

has a high probability of being measured after entering the photosensor. Saint-Gobain

claims a total internal reflection angle of 68.6 deg, with respect to the fiber core-

cladding boundary and a critical cone angle of 21.4 deg, with respect to the fiber

axis. Any scintillation photons which have trajectories greater than the critical cone

angle will remain trapped within the fiber until lost by means of optical absorption.

An illustration of the scintillating fiber core trapped, leaked, and escaped photon

properties is provided in Figure 4.

As the scintillation photons escape the fiber into the photosensor window, the

photons will refract. The amount the photon will refract is determined by the nu-

merical aperture, NA. The launch angle, θlaunch, core refractive index, and cladding

refractive index provide a relationship to the numerical aperture, which is given by

NA = n · sin (θlaunch) =
√
n2
core − n2

clad . (17)

where, NA is the numerical aperture, n is the refractive index of the external material

(e.g. air or photosensor window), and the θlaunch is the launch angle (i.e. escaped-

photon cone in Figure 4).

There are two means of light propagation within a scintillating fiber depending

on the location of the radiation induced scintillation event, which are meridional and

skew rays. The difference in the two modes of propagation is in the paths taken after

reflecting off the core-cladding boundary within the fiber core, shown in Figure 5. The

meridional rays traverse the fiber core by reflecting off of the core-cladding interface
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Figure 4. A cross-sectional view of a BCF-12 plastic scintillating fiber core, optical
cladding, and extra mural absorber illustrating the effects of photon loss, trapping,
and escape. (Left) The “trapped-photon” cones (denoted in red) open from the point
of scintillation birth toward the fiber ends and show the angular domain, with respect
to the fiber axis, where scintillation photons will internally reflect within the fiber. All
the scintillation photons depicted in this fiber core on the left (denoted in green) have
trajectories equal to or less than the critical cone angle (φC = 21.4 deg), with respect
to the fiber axis; thus they will internally reflect within the fiber. These internally
reflecting scintillation photons in the fiber core on the left will continue to reflect until
re-absorption by the fiber core. (Right) The “leaked-photon” tapered ring (denoted in
blue) requires the 2π rotation to form the tapered ring which photons can escape. All
of the scintillation photons depicted in the fiber core on the right (denoted in orange)
have trajectories greater than the critical cone angle, with respect to the fiber axis;
thus they will leak out of the fiber. The critical angle, θC , is normal to the core and
cladding interface and equals 68.6 deg. The “escaped-photon“ cone angle, φE, shows
how the escaped photons, according to Snell’s Law, will broaden the angle calculated by
the numerical aperture. Note the angles are not drawn to scale for illustrative reasons.
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and passing through the fiber axis. The skew rays traverse the fiber core by reflecting

off of the core-cladding interface and never passing through the fiber axis. Due to the

different trajectories taken, the meridional rays will have shorter path lengths than

the skew rays and thus reach the fiber ends in a shorter amount of time.

 

Cladding (n1) 

Scintillator (n0) 

Lengthwise Cross Sectional View of Fiber Scintillator 

Diameter 
d ≈ 0.25-1 mm 

Radiation 

Meridional Rays Skew Rays 

Fiber End 
Cross Sectional View of 

Fiber Scintillator 

Figure 5. A depiction of how meridional and skew rays propagate through a fiber
scintillator. (Top) Shows the lengthwise cross sectional view of the fiber scintillator as
radiation enters and induces a scintillation event in the fiber. A single ray (denoted
in red) is traced from the radiation induced event to illustrate the propagation down
the length. (Bottom) Shows the fiber end (i.e. axial) cross sectional view of the fiber
scintillator for both the meridional and skew rays.

Determining the position of the radiation induced scintillation event within the

fiber relies heavily on the precision of the timing measurements. The timing infor-

mation is contained in the time difference between the measured light reaching each

photosensor from the same scintillation event. Uncertainty in this time difference mea-

surement is in the response time of photosensors and oscilloscope’s timing resolution.

If the detection system produces resolvable time difference measurements then the

position-of-interaction of the radiation induced event can determined, which is known

as the “time-of-flight” method. The TOF method has many applications including

particle tracking, electron mobility, and mass spectroscopy experiments [5] [12] [13].
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2.3.2 Estimating Scintillation Yield.

The scintillation yield in a plastic scintillator can be characterized with a few

parameters, the scintillator efficiencies and energy deposited by a neutron,

Nphotons =
1

2
En εscint εtrap Pnon−quench · exp

(
− x

λeff

)
εquant , (18)

where, Nphotons is the number of photons detected at one end of a single scintillating

fiber, En is the amount of energy deposited in the scintillator by a neutron, εscint is

the scintillation efficiency (i.e. photons per keV) of the scintillator material, εtrap is

the trapping efficiency of the scintillator material, Pnon−quench is the non-quenching

factor, x is the distance from the position-of-interaction to the end of the fiber, λeff is

the effective attenuation length of the scintillator material, and εquant is the quantum

efficiency of the photosensor. Depending on the desired set up of Equation 18 the

non-quenching factor (Pnon−quench) could be substituted with the quenching factor

(Pquench), which is given by the relationship

Pquench = 1− Pnon−quench . (19)

Rearranging Equation 19 and substituting back into Equation 18 provides for a

slightly different variation of the number of photons detected at one end of a single

scintillating fiber (Nphotons) based on the quenching factor

Nphotons =
1

2
En εscint εtrap (1− Pquench) · exp

(
− x

λeff

)
εquant . (20)

27



www.manaraa.com

2.3.3 Estimating Position and Energy Resolution.

Long scintillating fibers make position-of-interaction calculations using the time-

of-flight method more feasible since a photons require more time to travel longer

distances. Long scintillating fibers, typically on the order of meters to tens of meters,

can potentially be useless in the POI calculations if the attenuation length (i.e. 1/e

length) is much shorter than the length of the fiber. The attenuation length of the

scintillating fiber describes the light intensity at a specific distance from the induced

scintillation event. A scintillation event has its greatest intensity of light (i.e. number

of photons) at the event’s position-of-interaction and the number of photons will

decrease with distance. An exponential decay using the ratio of the distance from the

interaction site to the attenuation length describes the number of surviving photons,

N =
1

2
N0 · exp

(
− x

λ

)
, (21)

where, N0 is the estimated total amount of scintillation photons produced, x is the

distance between the position-of-interaction and the photosensor, and λ is the atten-

uation length of the scintillating fiber.

If the initial amount of scintillation photons and the attenuation length of the scin-

tillating fiber are known or measured, then the radiation induced scintillation event

location can be calculated. The position is solved for by using Equation 21 for each

photosensor and combining the two expressions. Further manipulation, incorporation

of the fiber length, and solving for the position, x, gives the following

x =
1

2

(
λ ln

(
N2

N1

)
+ l

)
, (22)

where, x is the position-of-interaction, l is the fiber length, N2/N1 is the relative signal

amplitude ratio measured by the photosensors at each end of the fiber. Figure 6,

provides a schematic to define these variables.
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Figure 6. An illustration of the the dual ended fiber readout variables. The position-
of-interaction (POI) occurs at a distance x from end ‘1’ (i.e. left end). The scintillation
yields at each end are N1 and N2. The figure is recreated and adapted from Capt Jones
thesis [3].

The energy deposited by the incident radiation is estimated by the use of photon

counting by a photosensor (e.g. PMT or SiPMT). The estimation is simplified by

the fact that photosensors have a linear response to light entering the photosensor

detection window. This means that the measured readout from the photosensor is

proportional to the scintillation photons entering the photosensor escaping the scintil-

lating fiber. The calculations from Equation 22 only provide estimates of the number

of photons created from the induced scintillation event and there are uncertainties

associated with these calculations. Basic error propagation derivations of energy

with respect to time and position can be used in parametric studies to determine

the amount of time and position sensitivity for an ideal TOF neutron spectrometer.

These derivations and approximations are explained in greater detail in Section 2.7.

2.4 BCF-12 Plastic Scintillating Fibers

The creation of plastic scintillators involves the dissolution of an organic scintilla-

tor in a solvent, which is then polymerized. The fibers used in these experiments and

investigations are produced by Saint-Gobain. They are the BCF-12 plastic scintil-

lating fibers, which are mainly comprised of a polystyrene based core and an acrylic

polymethylmethacrylate (PMMA) cladding. Optical “cross-talk” can be reduced by
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applying an external extra mural absorber (EMA), however, the BCF-12 plastic scin-

tillating fibers used in this research do not have an EMA layer. The fluorescent

dopants chosen as part of the fiber core produce the desired scintillation and radiation-

resistance characteristics. However, when one scintillation property is increased the

other is often sacrificed to achieve the desired result. The fluor concentration is in-

creased in the small fibers (i.e. diameter is less than 0.5 mm). The consequence of

an increased amount of fluor is a decrease in the light attenuation length [11]. Saint-

Gobain provides a schematic for how their typical round plastic scintillating fibers

are constructed. This schematic is recreated and adapted in Figure 7. The more

important properties and specifications of the BCF-12 fibers used in this research are

displayed in Table 3.

Table 3. Saint-Gobain’s BCF-12 plastic scintillating single-clad fiber properties [11].

Property Value

Core Material Polystyrene
Core Refractive Index 1.60
Density 1.05 g/cm3

Cladding Material Acrylic
Cladding Refractive Index 1.49
Cladding Thickness 3% of Fiber Diameter
Numerical Aperture 0.58
Trapping Efficiency 3.44% Minimum
No. of H atoms/cm3 (Core) 4.82× 1022

No. of C atoms/cm3 (Core) 4.85× 1022

No. of electrons/cm3 (Core) 3.4× 1023

Radiation Length 42 cm
Emission Color Blue
Emission Peak 432 nm
Decay Time 2.7 ns
1/e Length 2.2 m
No. of Photons/MeV 8000
Operating Temperature −20◦C to +50◦C
Vacuum Compatible Yes
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Figure 7. A diagram of a typical Saint-Gobain Crystals, Inc. plastic scintillating fiber.
Some properties of interest are the refractive indices of the core and cladding, as well
as the critical cone angle (φC = 21.4 deg). Scintillation photons generated between zero
degrees and the critical angle will experience total internal reflection through both
axial directions of the fiber. Scintillation photons that reach the ends of the fiber
with an angle between zero degrees and the critical cone angle (φC = 21.4 deg) will
exit (i.e. escape) the fiber at the ends. The broadening of the angle to 35.7 deg is a
result of Snell’s Law and is calculated using the equation for the numerical aperture
(Equation 17). This photo is reproduced with permission from Saint-Gobain’s brochure
for their scintillating fiber products [11].
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The cladding material used by Saint-Gobain’s plastic scintillating fibers is PMMA,

which has the molecular formula C5H8O2. These fibers possess a density, ρ, of 1.2

g/cm3 and a refractive index, n, of 1.49. The geometrical shape and size of the fiber

determines the thicknesses of the optical cladding. In this research, round fibers with

diameters greater than 0.20 mm are used, which have a PMMA cladding thickness

of 3−5% of the fiber’s outer diameter (i.e. fiber core, cladding, and EMA, if the

EMA is applied). The trapping efficiency of the scintillating fibers are determined

by the refractive indices of the core and cladding, as well as the cross section of the

fiber. There is also another factor to consider in determining the trapping efficiency.

Since not all scintillation events occur along the fiber axis, the distance between the

fiber axis and the scintillation event will cause an increase in trapped scintillation

photons. Saint-Gobain quotes the trapping efficiency for their round scintillating

fibers as 3.4% to ∼7.0% [11]. The range depends on the location of the scintillation

event, the trapping efficiency is 3.4% at the fiber axis and increases as you travel

radially out from the fiber axis to ∼7.0% at the core-cladding boundary.

The “cross-talk” between the scintillating fibers can cause error in the signals.

Cross-talk occurs between adjacent optical fibers when scintillation photons leave

one fiber and enter another fiber. This can cause errors in measurement since it is a

form of photon leakage, and if position measurements are desired based on a specific

optical fiber interactions. A way to reduce this fiber cross-talk is to apply an exterior

coating to the optical fiber. The EMA is usually applied in thickness between 10 to 15

microns. The extra mural absorber coating has the negative consequence of decreasing

the overall intensity of the signal obtained from a fiber. The greatest reduction in

signal intensity is observed with black EMA and/or with short fibers. Another adverse

affect of EMA coatings include reduced light-piping in the cladding. The black and

white EMA coatings have differing uses based on the desired application. Black EMA,
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when applied near the fiber ends, is used to flatten out position dependent response,

while white EMA is used when building short fiber imaging bundles [11].

2.5 Photon Detection Techniques

The light produced in a scintillator from radiation is commonly collected and read

by photomultipliers (PMTs). While PMTs have the advantage of a large window area

and high gain, they have limited quantum efficiencies, high operating voltages, and

are susceptibility to magnetic fields. These fundamental limitations provide the need

for other high-gain photon counting detectors. The optical photon readouts of thin

organic plastic scintillating fibers, such as BCF-12 which emits in the blue, or inor-

ganic scintillating fibers, such as YAG:Ce which emits in the green, are more suited to

recently developed photosensors. Silicon photomultipliers have demonstrated better

response and higher quantum efficiencies compared to PMTs, as shown in Figure 8.
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Figure 8. The spectral response of a photodiode and PMT. The response of the photo-
diode is better suited for emission across the entire light spectra, whereas the PMT and
bialkali PMT are only suited for the violet and blue. For reference the BCF-12 plastic
scintillating fiber peaks at 435 nm, as shown in Figure 12. The plot is reproduced with
permission from Knoll [6].
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2.5.1 Photomultiplier Tubes.

Photomultiplier tubes provide the conversion and multiplication of photons into

photoelectrons. The photocathode performs the conversion. The spectral response

of a PMT is a function of PMT window material and and photocathode materials.

The photocathode in a PMT converts the incident light energy into photoelectrons

with the efficiency of the conversion dependent on the incident wavelength of light.

Photomultiplier tubes are typically less sensitive to longer wavelength (i.e. green

through red) due to the reduction of light absorption by the photocathode and the

relatively low energy imparted by the photoelectrons, they are more sensitive to

shorter wavelength (i.e. violet and blue) light.

The time characteristics exhibited by a PMT are determined by the electron tra-

jectories since the time required for photoemissions is very short lived. The transit

time of an electron in a PMT is derived from the average time difference between

the photon arriving at the photocathode and the burst of electrons at the anode. An

important characterization quantity, with respect to timing properties for PMTs, is

the spread or distribution in electron transit time. This timing characteristic of the

PMT is vital in determining the time width of the pulse of electrons arriving at the

anode.

The voltage pulse shape produced at the anode of the photomultiplier after a

scintillation event depends on the time constant of the anode circuit. As a result,

two extremes can occur; the first occurs when the anode time constant, τ ≡ 1/θ, is

very large compared to the decay time, λ, of the scintillator (i.e. θ << λ), and the

second occurs when the anode time constant is much smaller than the decay time of

the scintillator (i.e. θ >> λ). These two extremes are shown in the top three plots

of Figure 9.
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Figure 9. Top Three: Plots of voltage over time for a PMT anode pulse response at
the two extremes of (Middle) Case 1: Large and (Right) Case 2: Small anode time
constants. The plots are recreated and adapted from Knoll [6]. Bottom Three: Plots
of the response exhibited by a photocathode. (Left) Response of photocathode, where
individual electrons are leaving the photocathode. (Middle) Current at the anode
after the multiplication of electrons. (Right) Leading edge of voltage pulse across
anode circuit with large time constant. The plots are reproduced with permission from
Knoll [6].

In Figure 9, when the anode time constant is very large (i.e. θ << λ), the response

from the PMT resembles the top middle plot (Case #1); however, when the anode

time constant is very small (i.e. θ >> λ), the response from the PMT resembles

the top right plot (Case #2). The PMT integrates all the light from the scintillator,

thus the resultant output produced is discrete pulses which are shown in the bottom

middle plot of Figure 9. In cases where the PMT system response is well-known by the

user, post-processing of the output information can utilize deconvolution techniques

to extract individual scintillation event pulses.
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2.5.2 Silicon Photomultipliers.

Photodiodes are used to to detect and measure light, making them ideal instru-

ments to measure the response of scintillators to radiation induced events. Impact

ionization is the physical mechanism used for avalanche gain in photodiodes, which

occurs when the electric field in the depletion region is strong enough to have an elec-

tron transfer enough energy to a bound valence electron to ionize it. An electron-hole

pair is created, thus producing current gain large enough to be measured. Additional

carriers can potentially gain enough energy from the electric field to produce more

impact ionization. This creates an avalanche of of electron-hole pairs. The amount of

electron-hole pairs in the photodiode depletion region is directly proportional to the

number of incident scintillation photons upon the photosensor’s active region.

An avalanche photodiode (APD) is a p-n junction diode subjected to a large

reverse bias voltage. The Geiger operating region is reached when the bias voltage is

set to a level greater than the “breakdown voltage.” A large ballast resistor is placed

in series with the APD to quench the photodiode. A charge integrating preamplifier

is used to readout the signal generated by the APD, however, the APD can also

be directly readout from a load resistor [14]. A Geiger-mode avalanche photodiode

(G-APD) is capable of measuring single-photon events. Larger multiplication factors

are used to achieve signals large enough to be measured directly. In this research,

however, charge sensitive preamplifiers are used to increase the signal. A schematic

showing the readout circuit for a Geiger-mode APD is provided in Figure 10.

The silicon photomultipliers used in this research are the Hamamatsu S10362-

11-025C. This SiPMT is a new type of photon-counting device made up of multiple

APD pixels operated in Geiger mode. The SiPMT is an opto-semiconductor device

with excellent photon-counting capability, low voltage operation, and insensitivity to

magnetic fields. The characteristics of this SiPMT are found in Table 4.
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Figure 10. A general depiction of a readout circuit for a Geiger-mode APD. VA is the
bias voltage, RB is the ballast resistor, hν is the photon incident on the APD which
generates a voltage VD across the APD, RL is the load resistor across which VOUT is
measured. The circuit is reproduced with permission from Cova et. al. Evolution and
prospects for single-photon avalanche diodes and quenching circuits [14].

Table 4. Characteristics of the Hamamatsu S10362-11-025C SiPMT [15].

Parameter Value

Effective Active Area 1 x 1 mm
Number of Pixels 1600
Pixel Size 25 x 25 µm
Fill Factor 30.8 %
Spectral Response Range 320-900 nm
Peak Sensitive Wavelength 440 nm
Photon Detection Efficiency 25 %
Operating Voltage Range 70 ± 10 V
Dark Count 300 kcps
Dark Count Max. 600 kcps
Time Resolution (FWHM) 200−300 ps
Gain 2.75× 105
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2.6 Digital Data Acquisition

This section discusses the methods, techniques and equipment utilized to col-

lect data in the experiments. The raw pulses can be measured directly from the

detector, but in this case the pulses were measured after passing through charge

sensitive preamplifiers to a digital oscilloscope (Tektronix DPO7104). The character-

istics and specifications of the Tektronix DPO7104 obtained from the manufacturer’s

manual [16] is shown in Tables 5 and 6. The data can be saved digitally to the oscil-

loscope’s internal memory and then post-processed later by the user. Once the data

is saved the response of the analog pulse-shaping electronics can be implemented by

data processing algorithms.

Digital data acquisition can help in reducing detection system noise due to the

fact that it has the potential to bypass the preamplifiers, linear amplifiers, and shap-

ing amplifiers. All of these will add another component of noise to the signal as it

propagates through the system. Valuable timing information is lost when measuring

very fast events from the detector when the signal passes through more amplification

components. The data acquired in these experiments passed through charge sensitive

preamplifiers before being collected by the digital oscilloscope. The detection system

setup used in these experiments and investigations is shown in Figure 11.

There are multiple advantages to utilizing this equipment for fast digital data

acquisition. The Tektronix DPO7104 has an extremely high sampling rate, a max of

20.0 GHz, and is thus able to obtain a time resolution as low as 200 picoseconds per

data point (i.e. 0.2 nanoseconds per data point). Another advantage of this equipment

is the FastFrameTM acquisition capability. If this setting is activated, thousands of

individual waveforms per second can be measured and stored in the oscilloscope’s

internal buffer. The capabilities of the FastFrameTM acquisition are only bounded

by the size of the oscilloscope’s internal memory and its sampling rate. The third
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Figure 11. A diagram of the dual-ended SiPMT readout using digital data acquisition.
The light output from the scintillator is converted into voltage pulses by the SiPMTs,
which are then passed through and multiplied by the fast pre-amplifiers and then
measured by the digital oscilloscope.The digital oscilloscope captures a set number of
waveforms digitally in its internal buffer and then transfers the internal buffer to the
computer via a gigabit Ethernet connection. The digital oscilloscope is controlled by
the computer through TekVISA via a list of commands created in a MATLAB *.m file.

and final advantage of the Tektronix DPO7104 oscilloscope is the ability to configure

and declare every setting on the oscilloscope through Virtual Instrument Software

Architecture (VISA) commands. Software programs for numerical computation (e.g.

MATLAB or LabVIEW) have built in VISA interfaces compatible with the Tektronix

DPO7104. MATLAB contains instrument drivers that can be utilized to directly

control instruments like the Tektronix oscilloscope. The VISA or Tektronix Virtual
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Table 5. Vertical axis acquisition specifications for the Tektronix DPO7104 digital
oscilloscope used during these experiments and investigations [16].

Component Setting

Input Channels 4
Bandwidth 1 GHz
Rise Time 10% to 90% (Typical) 300 ps
Rise Time 20% to 80% (Typical) 200 ps
DC Gain Accuracy ± 1% with offset/position set to 0
Bandwidth Limit 2 GHz
Input Coupling AC, DC, GND
Input Impedance 1 MΩ ± 1% with 13 pF ± 2 pF, 50 Ω ± 1%
Input Sensitivity 1 MΩ: 1 mV/div to 10 V/div

50 Ω: 1 mV/div to 1 V/div
Vertical Resolution 8 bit (> 11 bit with High Resolution)
Max Input Voltage, 1 MΩ 150 V CAT I, de-rate at 20 dB/decade to

9 VRMS above 200 kHz
Max Input Voltage, 50 Ω 5 VRMS, with peaks ≤ ± 24 V
Position Range ±5 divisions
Delay between any Two Channels ≤ 100 ps (50 Ω)

Table 6. Horizontal axis acquisition specifications for the Tektronix DPO7104 digital
oscilloscope used during these experiments and investigations [16].

Component Setting

Max Sample Rate (1 Channel) 20 GS/s
Max Sample Rate (2 Channels) 10 GS/s
Max Sample Rate (3-4 Channels) 5 GS/s
Max Equiv. Time Sampling Rate 4 TS/s
Max Record Length with Std Config. 50 M (1 Channel), 25 M (2 Channels),

12.5 M (3-4 Channels)
Time Base Range 50 ps/div to 1000 s/div
Time Resolution (in ET/IT mode) 500 fs
Time Base Delay Time Range 5 ns to 250 s
Trigger Jitter (RMS) 1.5 psRMS with enhanced trigger OFF

< 100 fsRMS w/ enhanced triggering ON
Max FastAcq Wvfrm Capture Rate > 250,000 wfms/s with 4 Channels
FastFrame Acquisition Acq memory divided into segments;

maximum trigger rate > 310,000 wfms/s.
Time of arrival recorded with each event.
Frame Finder helps visually ID trans.
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Instrument Software Architecture (TekVISA) interface is independent of instrument

drivers and will work as long as the controller (e.g. MATLAB, C++, or Fortran) and

the instrument (e.g. Tektronix DPO7104, Hewlett-Packard, National Instruments)

are VISA compliant. The MATLAB/TekVISA interface allows complete control of

every feature of the DPO7104 as if the user were manually measuring signals on the

oscilloscope. Typical adjustments on the oscilloscope itself include voltage scale (y-

axis), time scale (x-axis), resolution, trigger settings, voltage offset, time offset, and

waveform positioning to get the oscilloscope to display all the desired features of a

waveform. These commands can be programmed into a MATLAB script to call up

and configure these settings when the MATLAB script file is run. Using a MATLAB

script allows for an easy change in settings when different parameters (e.g. scintillator

material, radioactive source, or photosensor) of an experiment are used.

2.7 Spatial and Timing Resolution

This section pertains to the uncertainty approximations in the spatial and time

domain and how the uncertainty affects the energy calculation and its uncertainty. A

neutron spectrometer which can back-trace the trajectories and energy of the incident

neutron radiation relies on precise spatial and timing measurements. If the theoretical

parameters of precision for space and time can be bounded and characterized a range

of limitations for the proposed time-of-flight neutron spectrometer can be proposed

and compared to experimental results. The spatial and time uncertainties are derived

and combined to determine the net effect each has on the energy and its uncertainty.

The kinetic energy of a neutron is

EKE =
1

2
mv2 =

1

2
m

(
dz

dt

)2

=
1

2
m

(
dz2

dt2

)
. (23)

Let us first consider the spatial uncertainty (dz) component and hold the timing
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uncertainty constant, while taking the derivative of kinetic energy with respect to

position. In this case, dz is used as the convention for position instead of dx or dy

because the cross-section of a long fiber bundle array is considered the xy-plane

d

dz
(E) =

d

dz

(
1

2
m
dz2

dt2

)
dE

dz
= m

dz

dt2
.

(24)

One assumption made in the derivation of Equation 24 is that the uncertainty in

the xy-plane, dx and dy, is neglected due to the small diameter of the fibers. The

fibers have a diameter of 0.25 mm, which gives the 14 × 14 fiber bundle array an

overall width and height of 3.5 mm. Now, lets consider the timing uncertainty (dt)

component and hold the spatial uncertainty constant, while taking the derivative of

the kinetic energy with respect to time

d

dt
(E) =

d

dt

(
1

2
m
dz2

dt2

)
dE

dt
= −m dz2

dt3
.

(25)

Using error propagation to solve for the uncertainty in calculating the kinetic energy

the uncertainty in space and time are accounted for as

σ2
E =

(
dE

dz

)2

σ2
z +

(
dE

dt

)2

σ2
t . (26)

Inserting Equations 24 and 25 into Equation 26 and taking the square root of both

sides of the equation solves for the uncertainty in energy, σE, resulting in

σE =

√(
m
dz

dt2

)2

σ2
z +

(
−m dz2

dt3

)2

σ2
t . (27)

42



www.manaraa.com

III. Experiment & Simulation Methodology

The details concerning the modeling and simulation of a single BCF-12 scintil-

lating fiber and a 14 × 14 fiber bundle along with its design and construction are

presented in this chapter. The experimental procedures and setup for the digital

oscilloscope dead time and acquisition characteristics is developed and discussed. In

addition, the methodology of the parametric studies concerning the spatial and timing

resolution are formulated and presented. This chapter concludes with the single BCF-

12 fiber dual-readout SiPMT experimentation, including the SiPMT circuit design,

construction, and dark count verification.

3.1 Modeling a Single BCF-12 Fiber

Geant4 is a Monte Carlo tool initially developed at CERN to describe the interac-

tions of particles in high energy physics experiments. The code has many applications

pertaining to interactions found in space, radiation effects on microelectronics, and

nuclear physics. In this research Geant4 is used to understand the neutron scat-

tering efficiency of the scintillating fibers, the amount of energy deposited by the

interactions, the amount of scintillation light created, and finally the amount of op-

tical photons that reach the ends of the fiber. With this information the simulated

response of the scintillating fiber to neutron interactions can be understood.

The BCF-12 fiber was modeled to understand the creation of scintillation events

as a result of neutron scattering in a single fiber. More importantly, the number of

double scatter neutrons and the amount of energy deposited with each scattering event

was modeled. With such a model, we can determine the double scatter efficiency, as

well as change the position of the external neutron source to find more trajectories

that favor increased double scattering events; which is discussed in Section 3.2.
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3.1.1 Simulation of an Internal Optical Photon Source.

A single plastic scintillating fiber (BCF-12) was modeled in Geant4 to understand

how optical photons generated by scintillation events travel axially to the fiber’s ends.

The single fiber was given the same dimensions and material properties provided in

Table 3, of Section 2.4. The fiber was modeled as polystyrene with an acrylic cladding

located in a vacuum. The cladding of the BCF-12 fiber, also known as PMMA, has a

chemical composition of C5H8O2 and a density of 1.2 g/cm3. Providing these material

properties allowed Geant4 to properly construct and model the PMMA cladding of

the BCF-12 fiber. The fiber scintillator is adequately defined in Geant4 using six pa-

rameters, which are the optical photon emission energy, core refractive index, cladding

refractive index, environment refractive index (e.g. air or vacuum), absorption length

(i.e. 1/e length), and the emission fraction. These parameters are defined as ‘ener-

gyrange,’ which is the range of optical photon energies emitted by the scintillator;

‘rindexcore,’ which is the refractive index of the scintillator core material; ‘rindex-

clad,’ which is the refractive index of the scintillator cladding material; ‘rindexair,’

which is the refractive index of the surrounding environment (e.g. air, in this case);

‘absorption,’ which is the scintillator attenuation length (i.e. 1/e length); and ‘emis-

sion,’ which is the normalized fraction of total optical photons emitted at a specific

energy (i.e. wavelength).

The isotropic optical photon source was set to generate 1×105 photons with a

mono-energetic energy of 2.74 eV to gather quick initial results. The photon source

was then changed to generate 1×106 photons for better counting statistics. The

photons were set to a mono-energetic value of 2.74 eV (i.e. ∼452 nm), which is the

average value of the optical photon emission energy distribution provided by Saint-

Gobain [11]. The absorption length was defined as 270 cm for each energy point.

The refractive indices of the core, cladding, and air for each energy point were held
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constant at 1.60, 1.49, and 1.00, respectively. The values for the refractive index of

core and cladding were obtained from Table 3. Finally the emission fraction was set

to 1.00, due to the fact that all the optical photons are mono-energetic.

The simulation traced the path of the optical photons from their generation point

at the center of the fiber to the ends where the light is detected. Geant4 is used to test

the trapping efficiency by constructing two “detector” surfaces placed at each end of

the fiber. As a photon is transported from the fiber core volume, through the core-

detector interface, into the “detector” volume a tally is recorded. The summation

of these tallies provide the fraction of generated optical photons which traversed

through the fiber from generation to the fiber ends. While the results from this

model provide insight into how optical photons transit down the fiber, they do not

provide information about where and how light is produced from neutron scattering

events. To study these effects, a second Geant4 model using an external neutron

source was developed.

3.1.2 Simulation of an External Neutron Source.

Building upon the previous Geant4 model, the internal optical photon source was

removed and replaced with an external fan beam neutron source located 1 cm from

the center of a single scintillating fiber. The fan beam was used so that Geant4 didn’t

have to generate and track neutrons that did not have a chance of intersecting the 500

µm diameter, 30 cm long plastic scintillating fiber. Unlike the previous simulation,

this model now introduces the true emission spectrum produced from scintillation

events in the fiber. The emission spectrum for BCF-12 is shown in Figure 12, which

indicates a peak emission around 435 nm (blue emission). The neutrons are modeled

as monoenergetic neutrons at 2.5 MeV, which corresponds with the energy of the

neutrons produced in the D-D neutron generator located on AFIT’s campus.
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Figure 12. The emission spectra of the BCF-12 plastic scintillating fiber. Eight points
were taken from the distribution to describe the function in Geant4. The wavelengths
were converted to energy for the correct input type into the Geant4 model. The
emission band of approximately 385−575 nm correspond to energies of 3.22−2.16 eV,
respectively. The amplitude is normalized. The distribution was reproduced with
permission from Saint-Gobain’s scintillating fibers brochure [11].

To correctly capture the distribution in Figure 12, eight “energy points” (i.e.

wavelengths) were chosen and given a refractive index value for the core, cladding,

and air, as well as the absorption length, and fraction of total optical photon emission

at each energy value. The eight points which define the BCF-12 emission spectra are

found in Table 7. The energy range, absorption and emission values were taken from

Saint-Gobain’s published brochure on scintillating fibers [11]. These parameters are

used by Geant4 to describe all the optical properties of the polystyrene scintillating

fiber, which is necessary for optical photon generation and transport.

Detector surfaces, used for tallying, are placed at both ends of the fiber to count

the number of photons that a real photosensor may detect from neutron induced scin-

tillation events. While this information is useful for understanding light production

and transport in the fiber, there are some other parameters of interest that must be
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Table 7. Optical emission properties used in the Geant4 model to define the BCF-12
plastic scintillating fiber. The BCF-12 optical properties were defined in Geant4 by
breaking the emission distribution (Figure 12) into 8 points. The six parameters (only
two shown here) defining the optical properties require a value at each of the 8 points.
The units column represents the unit multiplier required by Geant4 to define the units
of all the values contained within the respective parameter (i.e. row).

Parameter Value Units

energyrange 3.02 2.98 2.83 2.74 2.51 2.39 2.28 2.18 (.*eV)
emission 0.030 0.078 0.769 1.000 0.430 0.233 0.100 0.048 —

characterized in order to assess a fiber bundle for use as a time-of-flight spectrometer

and imager. In particular, it is important to know when and where neutrons interact

and the amount of energy deposited at each collision. After preliminary tests with

the single fiber model, it was expanded by incorporating multiple fibers to create a

model of a 14× 14 BCF-12 fiber array.

3.2 Modeling of the BCF-12 Fiber Bundle Array

A 14 × 14 BCF-12 scintillating fiber array model was built to understand the

expected number of double (or greater) neutron scattering events possible in a packed

fiber bundle. This model provided information about the position, speed, and energy

imparted by the neutrons interacting with the fiber array. The model provides insight

into the efficiency of double scatter events in the bundle. It should be noted that

only elastic neutron scattering events were recorded for this model. Using a model

where only elastic neutron scattering occurs will yield incomplete results since there

would normally be inelastic neutron scattering by carbon, which is a complex issue,

and oxygen, which creates prompt gammas and charged particles detectable by the

scintillator.

The output file from this model was post-processed using a MATLAB script,

located in Appendix A, designed to extract key parameters of interest. The infor-
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mation extracted by the script included the number of single, double, triple (and

greater) neutron scatters, the distance between scatters, and the energy deposited by

the neutron in each scatter. From this information, distributions of scattering events

can be determined. Additionally, the distance between scatters was binned with the

corresponding energy to understand the distribution of distances traveled for a given

neutron energy. A comparison was also drawn between the Geant4 energy of the

neutron and the calculated energy of the neutron, which was determined from the

distance between scatters divided by time between scatters (i.e. the velocity of the

neutron). If the velocity of the neutron is known then the kinetic energy is easily

determined. A comparison of the kinetic energy output by the model and calculated

kinetic energy (using the time required for a neutron to travel between scatter points)

is made to observe any possible differences in neutron energy. If there are any differ-

ences, it could indicate a flaw in the simulation from incorrect user parameter input

or basic computational errors in the post-processing.

3.3 Construction of a 14×14 BCF-12 Fiber Bundle Array

After analyzing the results of the Geant4 fiber bundle models, a 14 × 14 fiber

bundle was built using BCF-12 fibers from Saint-Gobain. Although not tested during

this research, the bundle will be used in future measurements at AFIT’s D-D neutron

generator to confirm simulation results. Each fiber in the bundle has a 500 micron

diameter, and is 30 cm long. They are then arranged into a square pack 14 × 14

array, which gives a cross section of ∼ 7 × 7 mm. These dimensions were based

on a length and cross sectional area suitable to identify the position of interaction

within the bundle with a total intrinsic efficiency of greater than 2.0± 0.2% [2]. In

an attempt to maintain uniformity of design, a master bundle key was made for

repeated duplication of correct length fibers. A long and straight groove was notched
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into a piece of wood and a perpendicular notch at 30 cm was made for consistency.

The wooden master key is shown in Figure 13. The spool was laid into the master

key flush to the left and gently pressed into the groove, it was then cleaved at the

perpendicular groove 30 cm to the right. The ends were cleaved using a hot knife. The

hot knife is essentially a soldering iron or wood burning kit with an attachable exacto

knife tip. The hot knife was used instead of scissors, a regular knife, or wire cleavers

because it cleans and quickly cleaves the plastic fibers without the requirement to

polish the ends afterward. Essentially the hot knife polishes the surface while cutting

the fiber [17]. This process was repeated until all of the 500 micron diameter BCF-12

fiber was cut. This totaled 222 pieces of 30 cm long fiber; 196 of these fibers were used

for the creation of the 14× 14 array; while 25 fibers were used in a 5× 5 array, which

served as a test bundle to practice the best way to assemble and glue the bundle for

strength and rigidity. The last fiber was kept as a spare in case any of the fibers were

damaged in the process of building the fiber array.

30 cm 

Figure 13. Illustration of the master key. The master key was made out of wood and
was used for consistent 30 cm long fiber cuts. The notch along the top was made by
drawing a line with a pencil and using a knife to cut down into the wood. The fiber was
pulled off of the spool and set flush with the left side (depicted with diagonal lines).
The fiber was gently pressed into the groove and cut at 30 cm lengths (designated by
the dotted line).
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With the single fibers all cut to 30 cm the construction of the 5× 5 and 14× 14

arrays could begin. The main focus was to ensure consistency with layers so that all

ends matched up and were aligned in a square matrix. Careful attention was given to

ensure the fibers lined up directly next to and above each other, so that there would

not be any fibers shifting into the natural grooves that were created when placing

cylindrical fibers next to each other. Double sided tape was placed on a clean table

surface. Two small pieces (∼ 5 × 5 fibers in length and width) were placed on each

end, flush to the cut edges of the row of fibers. An additional two pieces of double

sided tape, approximately the same size, where placed equidistantly apart between

the previous two pieces of double sided tape. A total of four pieces of tape per layer

were applied (one at each end and two in the middle) thus creating three equidistant

(∼ 10 cm) sections. A single fiber was placed down making contact with each of

the four pieces of double sided tape. Each following fiber was placed next to the

previous fiber, ensuring continuous contact with the adjacent fiber and maintaining

the four tape contact points until a row of five fibers was formed. Four more pieces of

double sided tape were placed on top of the newly formed row of fibers. This process

was continued until a 5 row by 5 column fiber bundle array was created, shown in

Figure 14. The process proved successful and consistent, so it was utilized in making

the larger 14 × 14 array fiber bundle. Figures 15 and 16 show the finished result of

the 14× 14 array fiber bundle.

The bundles took on a square rod shape, however, they would slightly deflect along

the axis of the rod due to the fibers being wound around a large spool. To straighten

out the deflection, white Elmer’sTM glue, wooden blocks, and a hot air gun were used

to press and adhere the square rod into a straighter form. This was performed by

pressing the array against two blocks while applying, only slightly, a little hot air

to remold the structure. The fibers would heat up just enough to be pliable, before
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Figure 14. Illustration of the construction of the 5×5 fiber array. The entire bundle
is ∼30 cm long with four pieces of double sided tape, placed ∼ 10 cm apart, holding
each layer (i.e. row) of fibers. The bottom right is a larger view of the fiber array
end. The tape is ∼ 2.5×2.5 cm in dimension (denoted in gray). The arrows on the
left of enhanced image denote the locations of the tape. Note: the fiber bundle is not
completely assembled in this image nor drawn to scale for illustrative purposes.

quickly cooling. After this quick procedure the Elmer’sTM glue was applied using

a paintbrush, to ensure all fibers were attached to one another in a square matrix.

The glue was allowed to dry for an hour. After each side had an hour to dry the

bundle was rotated one quarter of a turn (i.e. 90 deg) about its axis to apply hot air

for remolding and Elmer’sTM glue for adhering the next side of the square rod fiber

bundle. The heating and gluing process was repeated several times, with each side

receiving multiple applications of heat and adhesive, until the square rod was straight

and hardened with glue, ensuring the fiber bundle no longer deflected.
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Figure 15. The “xy-plane” cross-sectional view of the 14×14 BCF-12 fiber bundle
array. Each fiber is 500 micron (0.5 mm) in diameter, thus having an approximate
height and width of 3.5 mm. Notice, upon shining a light through the fiber you can see
light coming through; of course a few fibers appear to have some issues. These issues
include angled (non-perpendicular) cleaved ends, crushed (oval-shaped) ends, and dark
blemishes from over heated (burnt) plastic ends. Since all the ends were cleaved before
construction an additional cleave needs to be made to create a flush surface.

Figure 16. The “z-axis” view of the 14×14 BCF-12 fiber bundle array. The bundle
measures 30 cm in length, however, the ends are to be cleaved flush, thus will be shorter
after the final cleaves are performed.
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In an effort to reduce the amount of light leakage into the fibers from the environ-

ment an exterior lining of black vinyl electrical tape was applied. The application of

the black vinyl electrical tape is shown in Figure 17. The black electrical tape pro-

vided two desirable characteristics. First, the light leakage into the scintillator would

be reduced. Second, the fiber bundle would demonstrate an increase in rigidity. The

electrical tape was wound from end to the other end leaving approximately 0.5 cm of

each end still exposed. The exposed ends were left untaped to perform one last hot

knife cleaving to ensure the ends were flush.

Figure 17. The “z-axis” view of the 14×14 BCF-12 fiber bundle array. The bundle is
wrapped in black vinyl electrical tape to help mitigate light leakage out of the bundle.
The tape was applied at a approximately a 45 deg angle and three layers were applied.

3.4 Investigation of the DPO7104 Digital Data Acquisition

The process of using the fast digital data acquisition feature of the Tektronix

DPO7104 series digital oscilloscope controlled by MATLAB through the TekVISA

interface is examined. As discussed in Section 2.6, there are many advantages to

using the Tektronix DPO7104, a high speed digital oscilloscope for collecting large
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numbers of waveform samples in a matter of a few seconds. In an effort to determine

the dead time of this detection system, tests were performed to understand the amount

of time it takes to acquire, write, save, and transfer the data. This information can

help in determining if this data acquisition technique is fast enough for the types of

experiments desired, or if potentially another technique, such as pattern triggering,

will need to be utilized.

The two goals of this investigation were to determine the system dead time and

understand how the number of points per waveform, number of waveforms, and num-

ber of sets of waveforms affected the system dead time. An Agilent 33220A 20MHz

Function/Arbitrary Waveform Generator supplied a constant positive pulse, which

resembles the shape of the expected output of the SiPMTs. The generated output

pulse was set to a specific settings which can be found in Table 8. The frequency was

able to range from 1 Hz to 5 MHz. The pulse labeled Arbitrary 1 is a positive pulse

with exponential decay, while the pulse labeled Arbitrary 2 is just a regular positive

“rounded” square pulse.

Table 8. Characteristics of two arbitrary waveforms generated for the digital oscillo-
scope dead time experiments. The two types of pulses were generated by the Agi-
lent 33220A 20 MHz Function/Arbitrary Waveform Generator. Both waveforms could
range in frequency from 1 Hz to 5 MHz (period of 1 sec to 200 ns).

Identifier Amplitude HiLevel Offset LoLevel Width Edge Time

(Arb #) (VPP ) (V) (VDC) (mV) (ns) (ns)

Arb 1 +2.5 2.6 +1.35 100 N/A N/A
Arb 2 +1.475 1.475 +0.738 +0 20 5

These experiments used a simple set up. The waveform generator is connected to

the digital oscilloscope via a BNC cable. The digital oscilloscope is then connected to

a laptop or personal computer via an Ethernet cable, where the commands for data

collection are executed through a TekVISA interface by a MATLAB script. The MAT-

LAB script used in this investigation and throughout the rest of these experiments
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was taken from Appendix D of Gearhart’s thesis [2]. Only a few slight modifications

were made to adjust the input, the buffer size, and the output parameters. The final

modified MATLAB script used in this research is located in Appendix B.

When the digital oscilloscope receives a signal from the waveform generator, via

coaxial cables, the digital oscilloscope outputs the measured signal to the screen while

saving the data points into its internal memory. It is helpful to define a few terms (e.g.

run, set, waveform, and pulse) to aid in the comprehension of the entire collection

process used in this research. The first data point in the displayed (i.e. saved) pulse is

denoted as point A in Figure 18. The last point in the displayed (i.e. saved) pulse is

denoted as point B. A waveform is comprised of the data points between points A and

B. Each waveform has 1000 data points defined by the user via the MATLAB control

script. In Figure 18, the numbers 1− 6 label the pulses that occur within a waveform

as measured by the digital oscilloscope receiving a signal from a SiPMT. The arbitrary

waveforms, defined in Table 8, which are produced by the waveform generator will

appear different on the digital oscilloscope than the waveform in Figure 18 since they

have pulses of equal height and spacing.

Since the single building blocks of the entire data collection are the individual

pulses and waveforms, it is necessary to describe the collection of multiple waveforms,

which is defined as a set, as well as the collection of multiple sets, which is defined

as a run (Figure 19). A single run is composed of an user defined ‘n’ number of sets,

which typically ranged from 1−1000. A single set is composed of a user defined ‘m’

number of waveforms, which ranged from 1−10, 000. As depicted in Figure 18, the

waveform is defined by all the data points between points A and B, and composed of

a varying number of pulses.

There were two collection scenarios tested using this MATLAB script to under-

stand how a change in the number of sets collected in a single run affects the collection
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Figure 18. Illustration of a waveform measured and displayed by the Tektronix
DPO7104 digital oscilloscope. The waveform depicts a typical response received by
the digital oscilloscope from a SiPMT.

time and the fraction of pulses collected. The first scenario selects a high (e.g. 5 MHz)

frequency signal and varies the number of data collection sets, while recording the

waveforms and collection time. For example, the 5 MHz signal is sent to the digital

oscilloscope and a single run of the MATLAB script is initiated after changing the

number of sets (i.e. ‘n’). The time that transpires during the single collection run,

as well as all the recorded waveforms during the run are saved. For each new 5 MHz

signal run, the number of sets is changed to include 11 different values, which are 1,

2, 3, 5, 10, 25, 50, 100, 250, 500, and 1000. Each run holds constant the number of

data points per waveform at 1000 and the number of waveforms (i.e. ‘m’) at 1000.

For the second scenario the input signal is changed from 5 MHz to 1 kHz (i.e. low

frequency) and the same process to gather the run collection time and waveforms for

the 5 MHz signal is used. These two scenarios will determine how many pulses are
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Figure 19. A diagram breaking down a single acquisition run (denoted in black). A
single run is composed of set(s) (denoted in red), which is composed of waveform(s)
(denoted in green). The run begins and ends with the start and stop of the MATLAB
script for the SiPMT data collection.

collected compared to how many pulses theoretically should be collected to provide an

approximate efficiency (referred to as “fraction” in this research) at each frequency.

After completion of the two scenarios it is necessary to conduct further investi-

gation into the actual fraction collected out of total possible pulses during the true

acquisition function of the MATLAB script. As a result another test is performed to

accomplish two goals: 1) understand how the change in frequency, while holding all

other parameters constant, affects the collection time; and 2) break down the entire

collection process into its four main components: acquire, ask, read, and save. This

test included: 1) the actual acquisition (acquire) time, 2) the memory storage (ask)

time, 3) the read (read) time, and finally 4) the resizing and saving to the computer
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(save) time. Each component of this process is required in order to complete any

single acquisition by MATLAB from the Tektronix digital oscilloscope. The “acquire

time” represents the actual time the digital oscilloscope is acquiring the input signal.

The “ask time” represents the time it takes for the computer to prepare the waveform

preamble and binary data to be stored into memory. The “read time” represents the

time it takes the computer to read and store all the waveform data to the computer,

essentially it is the computer preparing itself to receive the data stored on the digital

oscilloscope. The “save time” represents the time it takes the computer to resize and

re-save the waveforms as a MATLAB file within the folder containing the MATLAB

script. The resize is required to have the data look exactly like the waveforms dis-

played on the oscilloscope screen. The MATLAB Level 5 MAT-file is composed of a

128-byte header followed by one or more data elements [18].

The entire data collection process requires a few distinct process with each re-

quiring tens to hundreds of lines of coding. To summarize all the actions, decisions,

and steps involved in a single run, a flow chart presented from a programming and

coding perspective is provided in Figure 20. The flow chart is similar to Figure 19 in

defining what a single run entails. This illustration, however, focuses on what tools

and equipment are involved in the execution and sharing of information during the

acquire, ask, read, and save processes.

The same MATLAB script from the first two scenarios was used for the additional

investigation, with the addition of an internal timing function in MATLAB, which

is used to determine the time elapsed during each of the four functional areas of the

MATLAB script. When the MATLAB script is initiated, the first portion saves all

the desired user input parameter values. The script continues by setting up the oscil-

loscope using the saved parameter values. An internal MATLAB timer is then started

by the script to designate the beginning of the acquisition function. The oscilloscope

58



www.manaraa.com

 RUN 

MATLAB OSCILLOSCOPE 

START CONFIG CONFIG 

ACQUIRE ACQUIRE 

ASK 

READ 

SAVE 

WRITE 

ASK 

READ 

COMPUTER 

WRITE 

 CONTINUE 

??? 

YES NO 

END 

Figure 20. An illustration of a run (denoted in black) from a programming and coding
perspective. A run begins when the MATLAB (denoted in red) script is user started.
The script progresses through configure, acquire, ask, read, save, write, and continue.
The oscilloscope (denoted in green) receives command prompts from MATLAB through
TekVISA commands which include configure, acquire, ask, and read. The computer
(denoted in blue) receives data from MATLAB to save the run, which is composed of
many set(s) containing multiple waveform(s). Solid lines represent a command being
executed. Dotted lines represent a move to the next command after the current prompt
is completed, where no new command is given and no data is transferred. The half
solid, half dotted line represents data being transferred, where no new command is
given.

then acquires the signal, collecting until the number of waveforms (user defined ‘m’

amount) have been reached. A MATLAB timing signature is then requested by the

script that marks the end of the acquisition function and the start of the memory

storage time. During the memory storage phase, the oscilloscope stores the pream-

ble and binary data into its own memory. Another MATLAB timing mark is then

requested to designate the end of the memory storage time and the beginning of the
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read time. The oscilloscope at this point reads the information and stores the number

of bytes into memory for all the waveform data in channel one and/or channel two

(depending on user determined setting of recording one or two channels). Another

timing mark is then requested to mark the end of the read time and the beginning

of the save time. The oscilloscope is now working with the LAN connected computer

to save the current set of waveforms onto the computer as ‘Ch 1.mat’ or ‘Ch 2.mat’

MAT-File, depending on the user’s channel selection. The final timing mark is then

requested to mark the end of the save time.

3.5 Scintillation Yield Parametric Study

Scintillation yield efficiency heavily impacts the performance and capability of a

proposed time-of-flight neutron spectrometer and is discussed in this section. Specifi-

cally, a scintillation yield parametric study devised to understand the minimum neu-

tron energy required to produce adequate photons in a BCF-12 scintillating fiber to

be detectable by a photosensor is discussed. Initially, photomultiplier tubes (PMTs)

were going to be used for both the single fiber and fiber bundle TOF neutron spec-

trometer experiments. The specifications of the fast PMTs that were used initially in

this research are provided in Appendix C. Unfortunately, one of the PMTs was dam-

aged during preliminary measurements and they were replaced with Hamamatsu’s

SiPMTs. This section will also provide a comparison of various Hamamatsu SiPMTs.

For the purposes of this parametric study, the non-quenching factor (Pnon−quench)

in Equation 18 was assumed to be 90% (i.e. Pnon−quench = 0.9), which is equivalent to

saying the quenching factor is 10% (i.e. Pquench = 0.1). This loss in scintillation pho-

tons will be approximately an order of magnitude less for neutrons below 1 MeV [19],

which could be the difference between the TOF neutron spectrometer system working

or not working. Other assumptions include the position-of-interaction occurring at
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the length bisector (i.e. axial middle) of the fiber, the photons will be isotropically

emitted from the point of interaction, and half of the available remaining photons

which remain trapped within the fiber will travel toward each end of the fiber. This

is not to be confused with half of the photons generated by a neutron scintillation

event, since only a small fraction (i.e. ∼6%) will be trapped within the fiber.

A MATLAB routine, found in Appendix D, was generated to compare the various

scintillation photons which can be detected by a particular photosensor, specifically

the Hamamatsu S10362-11 series. Equation 18, from Section 2.3.2 was used for esti-

mating the scintillation yield from various scintillating fibers with different geometries

and layers of cladding connected to Hamamatsu SiPMTs. The various scintillation

yield parameters used in the parametric study are provided in Table 9.

Table 9. The scintillation yield parametric study yield parameters and their values.
The scintillation efficiency, εscint, will only change as you change the type of scintillating
fiber (e.g. BCF-10, 12, 20, 60, 91A, 92, 98). The trapping efficiency, εtrap, changes as
a function of fiber geometry (e.g. round versus square fibers). The non-quenching
factor, Pnon−quench, is assumed as 90%. The position-of-interaction, x, is fixed at 15 cm
(but can be changed to user’s desire) to represent the mid-point between the fiber ends
(total length of fiber is 30 cm). The quantum efficiency, εquant, is a fixed characteristic
of the SiPMT chosen. The model no. indicates whether the property describes the
BCF-12 plastic scintillating fiber or the specific Hamamatsu S10362-11 series SiPMT.
This table references parameters from Equation 18.

Parameter Value Units Model No.

εscint 8
(

photons
keV

)
BCF-12

εtrap 0.0344 — BCF-12
Pnon−quench 0.9 — BCF-12

x 15 (cm) BCF-12
λeff 270 (cm) BCF-12
εquant 0.25 — 025C

0.48 — 050C
0.74 — 100C
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3.6 Spatial and Timing Resolution Parametric Study

Ultimately the achievable spatial and timing resolution for a fiber based TOF

neutron spectrometer will drive the feasibility of the approach. This section describes

a method for theoretically characterizing these two key design parameters. Using the

position and timing uncertainty derivations found in Section 2.5, a MATLAB script

was constructed to understand the bounds of a neutron spectrometer for a predeter-

mined spatial and time resolution. Analysis of multiple spatial and time resolution

settings is performed by holding one of the parameters constant and changing the

other. Holding the time resolution at a fixed value and ranging the spatial resolution,

then holding the spatial resolution and ranging the time resolution provides informa-

tion on how each component affects the overall theoretical energy resolution and its

uncertainty, which is then analyzed.

In his research on single scintillating fibers, Takada found a spatial resolution of

16 cm for Saint-Gobain’s BCF-20 fiber [5]. One goal for the entire research effort

is to find spatial resolutions that improve upon this published value. The values

found in Takada’s experiments are first used in the MATLAB script as the initial

basis for comparison. After analyses of these results a spatial resolution of 1 mm

was determined. This spatial resolution value is chosen due to the resulting energy

calculation from the MATLAB script having an error less than 10%. Also, the digital

oscilloscope used in this experiment can sample up to 20 GHz, which can then sample

points on the order of femtoseconds (fs). A crucial factor in the characterization

of a neutron time-of-flight spectrometer is the timing resolution between neutron

interactions within the plastic scintillating fiber. A problem can arise if a neutron

traverses within the scintillator and undergoes multiple scatters within a period of

time which the detection system can not distinguish. For example, a 1 MeV neutron

has a velocity of 1.39×107 m/s. If the neutron travels 1 cm through the scintillator,
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it will take ∼720 ps, but if it were to travel 10 cm, it will take ∼7.2 ns. This means

the timing resolution of this parametric study needs to be on the order of fractions

of a nanosecond to have the ability to characterize the time-of-flight between neutron

scatters. For the purposes of this parametric study the timing resolution was set at

0.1 nanoseconds.

A MATLAB script, shown in Appendix E, was built containing the derivation of

the spatial and timing uncertainties (see Equation 26) of a TOF neutron spectrometer

to calculate the energy output, which would be determined by the spectrometer for

a given position and time. An array of velocities was generated using a position

divided by time. The position ranged from one centimeter to one meter, incrementing

by one centimeter, and the time ranged from 0.1−10 ns, incrementing by 0.1 ns.

The uncertainties in time and space were fixed to the a desired value. The position

and time are then changed in controlled step sizes to observe the limits for which

an energy of interest could be determined by the neutron spectrometer. For each

range of position and time there will also be an associated error. From this the

neutron spectrometer energy output can then be bounded for its effective operational

limitations. The outputs desired would be energy, energy uncertainty, and the relative

error. A position uncertainty of 1 mm and a timing uncertainty of 0.1 ns were chosen

for the parametric study after performing some preliminary analysis. The preliminary

analysis determined that the range of acceptable (i.e. relative error of 10% or less)

spectrometer performance can only be achieved when we approach these values of

spatial and timing uncertainty.

3.7 Single BCF-12 Fiber Readout Using SiPMTs

The devices selected for measuring the light output from the scintillating fibers

were a set of Hamamatsu silicon photomultipliers. Initially, Hamamatsu fast PMTs
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were planned for the experiment, however due to readout problems and the lack of

obtaining a new PMT when one broke, other photosensors were considered. The

Hamamatsu S10362-11-025C SiPMT was chosen due to its availability, size, and its

previously use in research at AFIT by Jones while investigating YAG:Ce scintillating

fiber properties [3].

3.7.1 SiPMT Circuit Construction.

In order to characterize the performance of the SiPMTs and his fiber system,

Jones designed multiple light-tight boxes for his experiments. Two of Jones’ light-

tight box designs were used throughout these experiments. The first one was a custom

design aluminum box with cylindrical openings for PMTs, however, this one was

discontinued use after one PMT was broken and the time to secure a replacement

was prohibitive. The second light-tight box was a black PelicanTM case, which proved

to only reduce and not eliminate light entering the inside of the case where the SiPMTs

were housed. After a few initial tests of the background counts, it was determined

that these light-tight boxes were insufficient because too much light was leaking in

causing the photosensors to saturate [3]. A new light-tight box was required. An

aluminum box measuring 19 cm long, by 11 cm wide, by 6 cm high with a six-screw

removable lid was chosen. The aluminum light-tight box was drilled and fitted with

four BNC connectors, two on each short end of the box. This would provide two

bias voltage supplies and two output signal connections for each SiPMT photosensor.

Each side was labeled with HV (i.e. high voltage) and SIG (i.e. signal) for side A

and side B so as to not confuse the connection ports. A depiction of the outside of

the aluminum light-tight box is provided in Figure 21. The outside edges where the

screws secured the the lid to the box where layered in black electrical tape to reduce

light leakage into the box.
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Figure 21. The light-tight aluminum box used for SiPMT experimentation. The box
measures 19×11×6 cm and is labeled A and B for the dual ended SiPMT experimen-
tation. Black vinyl electrical tape was used to cover the edges of the lid-box interface
to reduce the amount of light leakage into the aluminum box.

The two SiPMTs and the circuit boards were affixed to aluminum jigs which

securely held the SiPMTs to be in constant contact with the single BCF-12 fiber.

The Hamamatsu SiPMTs used in these experiments are shown in Figure 22. The

SiPMT circuits originally used were from Jones’ thesis research which resembled a

circuit schematic shown previously in Figure 10. However, after much testing using

Jones’ circuit and receiving no usable signal, a new circuit was built. Three potential

readout circuits were considered for this research. The first two circuits suggested

by Jones and Hammamatsu respectively, did not produce signals when connected to

the power supply. The circuit suggested by Hamamatsu is shown in Figure 23. After

troubleshooting both circuits, a new circuit was constructed based upon its similar
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use in SiPMT-based time-of-flight positron emission tomography (TOF-PET). The

circuit design is shown in Figure 24. It is believed that this new circuit works better

because the signal received by the oscilloscope from the circuit is consistent with

Geiger-mode SiPMT outputs from the technical manual for Hamamatsu SiPMTs.

Figure 22. The Hamamastu S10362-11-025C SiPMT. Note the effective active area is
1×1 mm and is depicted by the darker small square within the larger silver square.
The SiPMT picture was obtained from the silicon photomultiplier technical brochure
and reproduced with permission from Hamamatsu [15].

The completed circuit boards were inserted into the aluminum jigs, which were

secured inside the aluminum box with a threaded rod. The threaded rod went through

each aluminum jig and was secured on each short end of the aluminum box with

washers. The aluminum jigs could be adjusted closer or further apart from one

another by moving the washers on the threaded rod. Adjustment of these aluminum

jigs is needed to easily secure different sizes of scintillating fiber for multiple length

TOF experiments. This setup is shown in Figure 25. The SiPMT circuits were

securely held to the aluminum jigs using nylon screws and washers. Nylon screws and

washers were used to prevent any shorting of the circuit through the screw contact

points into the aluminum jig. The circuit boards were all grounded to the aluminum

box by means of a wire connecting the circuit board to one of the BNC connector
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Figure 23. Basic connection diagram suggested by Hamamastu for their SiPMTs. RG-
223/U and RG-58C/U were used to wire the diagram to correctly match the impedance
of the circuit. The RG-223/U coaxial cable was used for both the output signal and
power and were connected to the box via a BNC connection. The connections inside
the box were provided by a female-female BNC union. Four of these unions (two for
power and two for signal output) were placed at the ends of the aluminum box. The
Hamamatsu suggested SiPMT circuit diagram was obtained from the their silicon pho-
tomultiplier technical brochure and reproduced with permission from Hamamatsu [15].

Figure 24. Basic connection diagram used for SiPMT-based TOF-PET detector. The
circuit is reproduced with permission from Ronzhin et. al. [4].
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ground points. A view of the front and back of the SiPMT circuit secured in the

aluminum jig is provided in Figure 26 and 27, respectively. Plastic washers were

also used in the securing of the aluminum jigs to the threaded rod to again reduce

potential shorting of the circuits. Since, the circuit boards had wires protruding

through the board, they were filed down and layered with black electrical tape to

minimize shorting of the circuit to the aluminum jig.

Figure 25. The light-tight aluminum box internal view. Each SiPMT is held securely
in each aluminum jig with nylon washers and screws. The threaded rod extends length-
wise across the entire inside of the aluminum box with both jigs secured with washers.
Each SiPMT circuit connects to two female-female BNC ports via RG-223/U 50 ohm;
one for bias voltage supply (-70.15 ±0.03 V), and one for signal output to the preampli-
fier. The signal was to the tektronix DPO7104 digital oscilloscope with a T-connector
and terminated with a 50 ohm terminator.
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Figure 26. The front-side view of the SiPMT circuit attached to the aluminum jig
inside the aluminum light-tight box. The small black box hole in the aluminum jig
located between the threaded rod and nylon screw is the hole where the single BCF-12
scintillating fiber would be placed to contact the SiPMT. The hole is slightly larger
than 500 µm (0.5 mm).

Figure 27. The back-side view of the SiPMT circuit attached to the aluminum jig inside
the aluminum light-tight box.
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3.7.2 SiPMT Dark Count Verification.

After finding a suitable circuit for the Hamamastu SiPMTs it was necessary to

determine the noise or background of the detection system. The background was then

compared to published specification that Hamamatsu has provided to determine if

there are any problems with the photosensors or if there is light leakage into the

light-tight aluminum box.

The system setup for determining the SiPMT dark count is shown in Figure 11.

The SiPMTs were provided a bias voltage of -70.15 ± 0.03 V. The signal output

was connected via RG-58C/U coaxial cables to charge sensitive preamplifiers which

sent the signal into the Tektronix DPO7104 digital oscilloscope. The oscilloscope

was controlled by a MATLAB script through a LAN cable from a laptop. The data

collected was post-processed using another MATLAB script. The waveforms being

post-processed would contain pulses from the the SiPMTs where no source and no

plastic scintillating fiber were present. Hamamatsu provides measured dark count

rates for each SiPMT they produce, which was 323,000 and 318,000 counts per second

for the two used in this research.

Post-processing was required after the data collection for the pulse height distribu-

tion of the dark counts to be determined and compared with the dark count provided

by Hamamatsu. A MATLAB script, located in was built to load all the waveforms

and find all pulses contained within each waveform and is found in Appendix F. The

script uses a point by point inspection of the values, when the values in a sequence

change from increasing to decreasing (or vice versa) the max or min is saved. With

each waveform containing tens to hundreds of small minima and maxima, a post-

processing filter to pull out the pulses of a single SiPMT firing was incorporated.

This means that a true SiPMT pulse was recorded when the difference in the local

minimum and maximum were greater than 100 mV. This means the pulses were not
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counted unless the min to max difference was greater than 100 mV. For count rates

below saturation, the number of pulses from the SiPMT are directly proportional to

the amount of light created in the scintillator, which is proportional to the energy

deposited by an incident neutron. This means that the pulses cannot just be counted,

but in fact must be weighted.

The information provided by these background tests of the SiPMT can then help

determine the background noise levels of the entire detection system. These results

can also identify problems such as shorting across the circuit boards, improper ground-

ing, or more likely problems with light leakage into the aluminum box.
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IV. Results & Analysis

Analysis of the parametric studies and experiments performed are presented with

some emphasis on a comparison of the results obtained from my experimentation to

those obtained by previous research. Parametric studies focused on the uncertainties

produced by timing and spatial resolution are discussed and included to determine the

limitations and capabilities of using scintillating fibers in combination with a digital

oscilloscope for neutron detection. Experiments to determine the requirements for

fast digital data acquisition as a means to read and write the data for post-processing

methods to be performed on the collected data are also presented. The sections will

contain Geant4 single and bundle models, oscilloscope timing findings, scintillation

yield expectations, spatial and timing resolution findings, and silicon photomultiplier

multi-pixel photon counting findings.

4.1 Geant4 Modeling

The Geant4 modeling results described in this section provide insight into the

limitations and design parameters required for a scintillating fiber-type neutron spec-

trometer. Results of the all the Geant4 models are presented, including a single

BCF-12 plastic scintillating fiber modeled with an internal isotropic optical photon

source, a fan beam neutron point source, and a 14× 14 multi-fiber bundle. Analysis

will consist mostly of distributions, comparisons, and interesting features of the data

collected by Geant4 models.

4.1.1 Single BCF-12 Fiber.

The single BCF-12 fiber model created in Geant4 for the optical photon source and

neutron source provided helpful information into the scintillation yield and neutron
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scattering characteristics and is discussed in this section. The main goal of these

two single BCF-12 fiber models was to validate the trapping efficiency of the plastic

scintillating fiber to be compared with Saint-Gobain’s published values.

Using the procedure as outlined in Section 3.1.1, the Geant4 simulations indicate a

trapping efficiency of 6.5% for both 1×105 and 1×106 optical photons. A depiction of

the optical photon generation and transport through the fiber is provided in Figure 28.

Figure 28. A view of the single BCF-12 fiber created in Geant4. The optical photon
source is located at the intersection of the x and y-axis. The green vectors are traces
of the optical photon trajectories within the fiber. While difficult to see, the light blue
lines depict the outer cladding boundary, and the dark blue lines depict the outer core
boundary. Note only the traces of the completely trapped optical photons are shown,
and that for illustrative purposes this depicts an optical photon source of 100 generated
photons.

73



www.manaraa.com

For BCF-12, Saint-Gobain claims a trapping efficiency of 3.44% for their round

fibers, but the model indicates an efficiency of almost double this value. By using

the geometry and material properties of the fiber itself, assuming an isotropic optical

photon point source at the center of the fiber, the trapping efficiency of the fiber can

be calculated, beginning with

sin (φC) =
rF
rS
, (28)

where, φC is the critical cone angle, rF is the radius of the plastic scintillating fiber,

and rS is the radius of the isotropic point source. These values are needed to determine

how much of the isotropic point source is subtended by the plastic scintillating fiber,

which is constrained by the critical cone angle and radius of the fiber. The critical cone

angle is a purely material property, based on the difference in the refractive indices

of the core and cladding [10]. Solving for rS with rF = 0.25 mm and φC = 21.4 deg

gives the following

rS =
rF

sin (φC)
=

0.25 [mm]

sin
(

21.4 [deg] · π [rad]
180 [deg]

) = 0.685 mm. (29)

The solid angle defines how much the plastic scintillating fiber subtends the isotropic

point source (i.e. scintillation photons created from a neutron interacting with the

scintillator). The solid angle in this case is approximated by the relationship between

the surface area within the scintillating fiber which traps the source photons (i.e. 2

circles) and the entire surface area of the source photons (i.e. a sphere). There is

some approximation when using the two circles as the surface areas overlaying the

spherical surface area due to the fact a sphere is continuously curved while the two

circles are tangential and flat to the sphere’s surface. A depiction of the photons

subtended by the plastic scintillating fiber from an isotropic point source is given in
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Figure 29. The solid angle, Ω, is given by

Ω =
2 · SAF
SAS

=
2 (π r2

F )

(4π r2
S)

=
r2
F

2 · r2
S

, (30)

where, SAF is the surface area of the plastic scintillating fiber, and SAS is the sur-

face area of the isotropic point source within the fiber. Solving for Ω after some

manipulation and cancellations with rF = 0.25 mm and rS = 0.685 mm gives

Ω =
2 (π r2

F )

(4π r2
S)

=
r2
F

2 · r2
S

=
(0.25 [mm])2

2 (0.685 [mm])2 = 0.0666 . (31)

The solid angle subtended by the ends of the fiber from a point source at the center

of the fiber is approximately 0.0666, or represented as ∼ 6.7%. This is based on

the assumption that all scintillation photons generated at the source which have an

initial trajectory angle between 0 to φC = 21.4 deg, with respect to the fiber axis, will

undergo total internal reflection.

The simulation does not account for potential defects in the material, which in-

clude air gaps (e.g. oxygen) in the molecular structure of the core as well as other

defects that exist in a real fiber. Another potential cause for the discrepancy was

the assignment of an initial polarization vector for each generated optical photon, a

parameter required by the simulation software. To accommodate this, the photons

were randomly assigned initial polarizations, uniformly distributed over all possible

values. Closer inspection of how the polarization vector operates in Geant4 could

potentially lead to a more appropriate distribution. The polarization vector could

cause a discrepancy if the assigned vector value biases optical photons to fall within

or outside of critical angle of total internal reflection. This polarization value is also

the reason why there are more optical photon traces in the negative z-axial direction

than the positive z-axial direction, which can be observed in Figure 28.
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Figure 29. A depiction of the solid angle, Ω, of the point source scintillating photons
subtended by the plastic scintillating fiber. The gray shaded region indicates where the
plastic scintillating fiber surface and source surface area overlap, which is constrained
by the critical cone angle, φC , radius of the isotropic point source ‘sphere,’ rS, and the
radius of the plastic scintillating fiber, rF . Note the lengths, radii, and angles are not
drawn to scale for illustrative purposes.

4.1.2 14×14 BCF-12 Fiber Array.

The results of the 14 × 14 BCF-12 plastic scintillating fiber array model built in

Geant4 are explained in this section. The bundle was exposed to the same external

neutron point source as described in Section 3.1.2, and the fiber bundle was exposed to

1×108 generated neutrons. The main purpose of this simulation was to determine the

fraction of double (and greater) scattering events, distance between neutron scatters,

and the velocity distribution of the neutrons.

As mentioned earlier, a time-of-flight neutron spectrometer requires at least two

scatters within the scintillator to back-calculate the energy of the incident neutron.

When a neutron elastically scatters it can potentially deposit energy ranging from
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near zero to all of its energy. The distance traveled by a neutron in a material before

scattering is directly related to its kinetic energy. If the neutron undergoes a second

scattering event within the scintillating fiber, the distance and angle of scatter from

the first to second event can help us infer the energy of the incident neutron. Multiple

neutron scatters provide increased statistical confidence in the energy calculations of

incident neutrons scattering within the detector volume. Table 10 shows the distribu-

tion of single up through four scattering events for a simulation that generated 1×108

neutrons.

Table 10. Distribution of scattering events for the 14×14 BCF-12 fiber array Geant4
simulation exposed to 1×108 neutrons.

No. Scatters Counts Predicted Intrinsic Efficiency

Single 5436581 5.437%
Double 358907 0.359%
Triple 27583 0.028%
Quad 2541 0.003%

This data can provide valuable information in designing an actual experiment

where a 14×14 BCF-12 scintillating fiber bundle is subjected to a neutron source. For

example, if exposing a real 14× 14 BCF-12 fiber bundle to a D-D neutron generator,

the solid angle could be calculated from the neutron source to the cross-sectional

surface subtended by the bundle. According to Table 10, if 1×104 double scatter

events are desired, then ∼ 2.8 million neutrons are required to be subtended by the

bundle. With a known neutron flux and source location, a user can use these results

to predict the measurement time required to collect a specified number of scintillation

events within the fiber bundle.

The distribution of the number of counts for each scatter distance from 1st to

2nd scatter, 2nd to 3rd scatter, and 3rd to 4th scatter are provided in Figure 30.

This plot demonstrates the most probable distance a neutron travels between scat-
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ters. In general, as the neutron loses energy the distance traveled between scatter

events decreases, however, the distribution remains highly peaked at low distances

due to the small cross sectional area presented by the fiber bundle. The distances

separating most scatter events are relatively small, as the neutrons scatter once and

leave the fiber bundle. One simple solution to increasing the scattering efficiency

would be to increase the fiber bundle size. More scintillating material would increase

the probability of neutrons scattering more than once within the bundle. However,

if compactness is desired, taking advantage of geometry can help increase scattering

efficiency. If the fiber bundle is subjected to a radiation source in its axial direction

instead of perpendicular to the axis, then more fiber material is in the path of the

neutrons. Since neutrons are more likely to scatter forward, they are more likely to

travel down the fiber bundle axis, thus increasing the scattering probability without

increasing the size of the fiber bundle itself.

For each neutron scatter event of 1st to 2nd scatter, 2nd to 3rd scatter, and

3rd to 4th scatter the remaining energy of the neutron from the beginning to the

end of the scatter was plotted against the distance traveled, shown in Figure 31. In

general the distance traveled and energy both reduce with each subsequent scatter.

In Figure 31, the neutron energy represents the amount of energy possessed by the

neutron immediately following the starting scatter point number. Also, the distance

represents the length traveled by the neutron from the starting scatter point number

to the final scatter point number. There is a degree of uncertainty in these plots,

which is not immediately evident. The x and y locations provided by the Geant4

model output deck provide only the fiber array location numbers. The fibers are

0.5 mm in diameter and the scattering event could have happened anywhere within

the 0.25 mm radius, thus the x and y positioning produce an associated positional

uncertainty equal to the fiber radius (i.e. ± 0.25 mm). Figure 31, does not include
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Figure 30. Distribution of counts for distance traveled between 1st to 2nd, 2nd to 3rd,
and 3rd to 4th neutron scatter events in the 14×14 BCF-12 fiber bundle. The 1st to
2nd neutron scatter is denoted in blue. The 2nd to 3rd neutron scatter is denoted in
green. The 3rd to 4th scatter is denoted in red. The fiber bundle was subjected to
1×108 neutrons.

this error in its MATLAB script energy calculations. The position was approximated

in the MATLAB post-processing script using the center of the fiber as the location of

the scintillation event, which is denoted in the output deck by the x and y location

of the fiber in the array. An output deck lists the fiber location in the third column

using four digits (i.e. yyxx). For example, a fiber location of ‘0311’ represents the

third fiber from the bottom of the bundle in the positive y-direction, and the eleventh

fiber from the source side of the bundle in the x-direction. This would equate to an

y-coordinate of 1.25 ± 0.25 mm and a x-coordinate of 5.25 ± 0.25 mm, where the
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calculation is given by the following

Fiber Location (x, y) = ({(xx− 1/2) · 0.5 mm}, {(yy − 1/2) · 0.5 mm}) , (32)

where, xx is the first two digits in the fiber location output deck pertaining to the

x-axis fiber number, and yy is the last two digits in the fiber location output deck

pertaining to the y-axis fiber number. Not shown in the calculation, but needed with

each x and y fiber location is an error of ± 0.25 mm.

Figure 31. All 1st to 2nd, 2nd to 3rd, and 3rd to 4th neutron scatter event energies
and respective distance traveled. The 1st to 2nd neutron scatters are denoted in blue.
The 2nd to 3rd neutron scatters are denoted in green. The 3rd to 4th neutron scatters
are denoted in red.
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The three different scatter plots in Figure 31 are combined to provide a map

of how many neutrons traveled a specific distance (dx) at a specific energy (dE).

The combined dx and dE map is presented in Figure 32. One of the most unusual

characteristics is the double peaks centered around 2 and 2.5 MeV at a scatter distance

of approximately 10 mm. I am unsure as to what is causing these two energy peaks

to occur so often. It could be one of two problems with either 1) the model or 2) the

post-processing calculations. The model only takes into account elastic scattering of

neutrons within the scintillating fiber, which could cause preferential energy scattering

while neglecting inelastic scattering. Some ways of testing this phenomena include

changing the fiber array size and the energy of the incident neutrons to see if the

behavior persists or changes. If the source neutron energy is changed and the peaks

shift to lower energies where the double peak behavior didn’t exist originally, then

the issue is most likely an improper request of information by the user or the physics

that is applied. If the results persist after changing the size of the fibers or the bundle

size, then the geometry of the model is the problem. The next unusual characteristic

is the constant number of scatters at 10 mm for all energies ranging from 0.1−1.75

MeV. This demonstrates a constant probability of scattering at 10 mm where energy

dependence is non-existent below 1.75 MeV. Again, I am not sure why this constant

appears throughout the model. This could be a result of the overall mean free path

of neutrons at energies between a few electron-volts to 2.5 MeV is greater than 10

mm, meaning that scattering out of the bundle is more likely than continued scatters

within the bundle. The final unusual characteristic can be seen as a inverse distance

squared relationship at 2 and 2.5 MeV starting at 10 mm and falling out to 50 mm.

It is difficult to see, but there is a slight region that ranges from a distance of 1−3 mm

and neutron energy of 0.1 to 2 MeV, which has approximately half as many counts

as the 10 mm constant count region.
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Figure 32. The overall scattering energy and distance traveled distribution for all
scattering events combined. Each energy bin represents a dE of 100 keV and each
distance bin represents a dx of 1 mm.

Another approach to understanding and verifying the results of the output file

generated by the Geant4 simulation was to compare the neutron energy stored in the

Geant4 simulation to the calculated energy based on the distance between neutron

scatters and the time it took to traverse that distance. The simulation starts the

neutron at 2.5 MeV and deposits a certain fraction of energy with each scatter. The

velocity of that neutron can be calculated directly by finding the distance between

scatters and dividing it by the transit time. Thus, assuming a non-relativistic velocity,

the energy of the neutron can be calculated using the classical form for kinetic energy,

E =
1

2
mv2, (33)

where, E represents the kinetic energy of the neutron, m represents the mass of the

neutron, and v represents the velocity of the neutron. The comparison was then
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made by plotting the Geant4 simulation neutron energy on the x-axis and plotting

the calculated neutron energy on the y-axis. The plots of these comparisons for 1st

to 2nd, 2nd to 3rd, and 3rd to 4th neutron scatter events are given in Figure 33.

Figure 33. Comparison of the Geant4 and MATLAB calculated neutron energies for
1st to 2nd, 2nd to 3rd, and 3rd to 4th neutron scatter events. The majority of 1st to
2nd neutron scatter points follow the Geant4 = Energy

(
1/2mv2

)
line, denoted in black.

Note: the data marker size for 2nd to 3rd and 3rd to 4th neutron scatter events is
larger than the 1st to 2nd neutron scatter events to increase visibility on the plot.

In all cases the energy should not exceed 2.5 MeV since only down-scattering of

neutrons occurs. In all the plots the Geant4 simulation neutron energy (i.e. x-axis)

never exceeds the 2500 keV boundary. However, the calculated neutron energy, based

on v2, varied greatly for all scattering situations. To aid in a quick recognition of

the expected equality of data a black line is provided in Figure 33. The black line
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represents x = y (i.e. Geant4 Energy = Energy (1/2mv2)). A good fit would mean

that all the data points should form a line exactly along the black line.

For the first to second neutron scatters in Figure 33, the majority of points follow

a broad line that is close to the black line. However, there are obvious problems with

the calculated energies. The first is the vast number of points that exceed the 2.5 MeV

threshold. The next is that the same unusual pattern, shown in Figure 32, of the large

number of 2 and 2.5 MeV scattered neutrons. For the second to third neutron scatters

in Figure 33, the points do not follow the black line, meaning a bad fit. In fact, the

data behaves almost opposite to that of the 1st to 2nd scatter, where the calculated

energy underestimates the energy compared to the Geant4 value. In fact, all points

are found below the black line. For the third to fourth neutron scatters in Figure 33,

the points are more concentrated below the black line, however, there is a fair number

of extremely unrealistic and overestimated values calculated by MATLAB. A large

portion of data points are located extremely higher than expected.

Overall, the simulated neutron scattering behavior exhibited within the plastic

scintillating fiber bundle is unusual and unexpected. The first to second neutron

scatters mostly demonstrate matching values (follow the black line, Figure 33) for

almost all neutron energies from 0 to 2.5, with the exception of the regions around

2 and 2.5 MeV. The second to third neutron scatter neutron energies are underesti-

mated by the MATLAB post-processing script values. The third to fourth neutron

scatter energies shows some resemblance to the 2nd to 3rd neutron scatter energies,

except there are some scatters which are greatly overestimated by the MATLAB post-

processing script, when compared to the Geant4 simulation. It is not clear why the

neutron energy values change drastically from scatter to scatter when comparing the

kinetic energy calculation, from Equation 33, to the Geant4 simulation energies.
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4.2 Digital Oscilloscope Findings

The various timing experiments, data collection techniques and results from the

digital oscilloscope are presented in this section. The fast acquisition mode of the

Tektronix DPO7104 digital oscilloscope proved to be an interesting feature when

controlled by MATLAB through a LAN cable by means of TekVISA. The original

MATLAB script for performing fast acquisition on the Tektronix scope was written

by Gearhart [2]. The script was modified for the various experiments performed in

this research, and the procedures for these experiments were described previously in

Section 3.4.

An important component of the neutron spectrometer detection system is having

a data collection system fast enough to capture the neutron double scatter events from

the responses generated by the SiPMTs. To determine the speed and responsiveness

of the digital oscilloscope, multiple timed data collection experiments were performed

using the procedures detailed in Section 3.4. The results for the complete collection

times are found in Tables 11 and 12. Table 11 shows the results when the frequency

is held at 5000 kHz, and Table 12 shows the results when the frequency is 1 kHz.

Recall the definition and depiction of the a waveform from Section 2.6 (Figure 18).

Tables 11 and 12 reveal that for equivalent size sets the 5 MHz signal is collected

faster than the 1 kHz signal. Plotting the sets and applying a linear fit provides

the time per set, which is 1.82 and 2.95 seconds per set for the 5 MHz and 1 kHz,

respectively. The fraction term is defined as the number of pulses that are collected

out of total possible pulses. Calculating the fraction term requires solving for the

total number of pulses collected, as well as the total number of possible pulses. The

total number of collected pulses is

NCP = NS ·NW/S ·NP/W , (34)
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where, NCP is the number of collected pulses, NS is the number of sets, NW/S is the

number of waveforms per set, and NP/W is the number of pulses per waveform. The

total number of possible pulses is

NPP = f · t , (35)

where, NPP is the number of possible pulses, f is the frequency of the signal, and

t is the amount of time it takes the digital oscilloscope to collect the number of

sets requested. After solving for Equations 34 and 35, they are combined to form

Equation 36 which calculates the fraction term and is

F =
NCP

NPP

, (36)

where, F is the fraction term. This fraction is based on the entire acquisition time,

which only occurs during the first part of the MATLAB script. The other three

functions are the ask, read, and save; presented in Figure 35.

Table 11. Collection times for a 5000 kHz pulse, where each set is comprised of 1000
waveforms

(
NW/S

)
.

Frequency Sets Pulse/Wvfrm Time Fraction

f (kHz) NS NP/W t (sec) F

5000 1 5 1.7426 0.00057
5000 2 5 3.6744 0.00054
5000 3 5 5.4353 0.00055
5000 5 5 9.4352 0.00053
5000 10 5 18.0862 0.00055
5000 25 5 45.9288 0.00054
5000 50 5 91.5124 0.00055
5000 100 5 183.0905 0.00055
5000 250 5 459.0819 0.00054
5000 500 5 921.4503 0.00054
5000 1000 5 1818.4000 0.00055
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Table 12. Collection times for a 1 kHz pulse, where each set is comprised of 1000
waveforms

(
NW/S

)
.

Frequency Sets Pulse/Wvfrm Time Fraction

f (kHz) NS NP/W t (sec) F

1 1 1 2.8491 0.351
1 2 1 5.5149 0.363
1 3 1 8.4308 0.356
1 5 1 13.9045 0.360
1 10 1 29.2551 0.342
1 25 1 69.6045 0.359
1 50 1 139.7677 0.358
1 100 1 284.2040 0.352
1 250 1 716.8098 0.349
1 500 1 1480.7000 0.338
1 1000 1 N/A N/A

An initial comparison of the varying number of sets taken at 5000 kHz and 1kHz

reveals the time required for collection is less for signals with higher frequency. This

is due to the fact that the higher frequency signal produces more pulses in a shorter

amount of time and the lower frequency signal produces pulses over a longer amount

of time. A simple illustration showing this difference in frequencies is provided in

Figure 34. The consequence of a higher frequency signal input is an increased difficulty

in collecting all the possible pulses during the acquisition. This is shown in the fraction

column of Tables 11 and 12, where more of the lower frequency signal was collected

than the higher frequency. Additionally, the fraction of total pulses collected did not

change as the number of acquisition sets changed. This indicates that each acquisition

set within a collection run takes approximately the same amount of time to complete.

The placement of internal MATLAB timing functions to breakdown the entire

collection system into four distinct functions of acquire, ask, read, and save provides

a better understanding of the actual time it takes to acquire waveforms. These four

stages also provide the true total of possible pulses the digital oscilloscope could collect
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t0 

Figure 34. Comparison of two different frequency signals. Signal A has a lower fre-
quency than signal B. If the same amount of time, t, is used to collect signals A and B,
then it is expected that a greater number of pulses (or counts) will register for signal
B than for signal A. Same logic follows that for a desired number of pulses (counts),
signal B will take less time (t) to reach the desired number than signal A.

during the acquire phase of the run. The frequency was varied from 0.1−5000 kHz,

the set number was held constant and the number of waveforms per set was varied in

decades from 1−1000. The results, located in Appendix G, for 1 and 10 waveforms

per set are provided in Table 16 and the results for 100 and 1000 waveforms per set

are provided in Table 17. The collection times can be more easily analyzed when

plotted, as shown in Figure 35.

There are a few distinguishable relationships between the collection times, fre-

quency, and waveforms per set. The first relationship observed is between the number

of waveforms per set and the collection time. The acquire, read, and save times in-

creased as the number of waveforms per set increased. There was negligible change in

ask time as the waveforms per set increased. As more data is collected (e.g. increase

in waveforms per set) it takes more time to perform the same tasks because more
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Figure 35. Comparison of the various time components of a single fast digital data
acquisition. The four plots show how each of the functions in a single acquisition affect
the total time to perform the data collection. (Top Left) The “acquire time” directly
relates to a change in frequency and/or waveform per set. (Top Right) The “ask time”
demonstrates a negligible adjustment to a change in frequency and/or waveform per
set. (Bottom Left) The “read time” reacts the same as the acquire time, where there
is a direct relationship between the read time and a variation in frequency and/or
waveform per set. (Bottom Right) The “save time” demonstrates no relation with
frequency, but directly relates to a change in waveform per set. Both the acquire
time and read time dominate the entire collection time by two orders of magnitude
for frequencies less than 10 kHz, when compared to the ask time and save time. The
acquire and read times are only one order of magnitude larger in time for frequencies
greater than 10 kHz. Note: the legend in the acquisition time vs frequency plot applies
to all four plots.

information (i.e. more memory) is required to process the task. Another relation-

ship determined is that with increasing frequency the time required for acquisition

and read time reduces. If the frequency increases it takes less time to acquire and

read the same amount of requested waveforms per set, as an increase in frequency

translates to an increase in pulses over the same duration of time; recall Figure 34.

In general, the ask and save times stayed constant with increasing frequency. While

these appear to be simple correlations, a trade-off between the user defined variables
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(e.g. number of data points per waveform, number of waveforms per set, number of

sets, oscilloscope time per division, and frequency) is needed to determine an appro-

priate balance of overall collection time and fidelity of measured data points. In an

experimental setting, however, the pulse frequency will be a function of, among other

factors, the fiber bundle size, the number of incident neutrons, and the neutron’s

kinetic energy.

One such case is evident in the fraction of pulses collected as a function of fre-

quency. A few variables affect the fraction of total pulses collected, including the

oscilloscope sample rate, the number of pulses per waveform, the number of points

per waveform, the number of sets, and the frequency of the incoming signal. Figure 36

demonstrates several of these effects on the fraction of total pulses collected. The two

relationships depicted in Figure 36 are 1) the fraction of total pulses collected by the

oscilloscope decreases with increasing frequency, and 2) the fraction of total pulses

collected increases with increasing number of waveforms per set. The more interest-

ing feature of this plot is in the relationship shown at the highest frequencies. At

the highest frequencies the fraction seems to remain roughly constant on a log scale.

This is due to the fact that the frequencies are sufficiently high that even though the

sample rate was not changed, more of the pulses were captured in a single waveform.

All of the frequencies at or below 1 MHz had only one pulse per waveform, while the

2.5 and 5 MHz frequencies had 3 and 5 pulses per waveform, respectively.

A few important considerations are helpful to efficiently and effectively use the

Tektronix DPO7104 digital oscilloscope fast digital data acquisition setting to ob-

tain fast signals, which is needed in TOF neutron spectroscopy. These considerations

include time and diligence in running multiple tests varying all the parameters to

collect fast signals. These tests provide information as to the time, collection effi-

ciency, system dead time, and data uncertainty. All of the parameters can then be
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adjusted to provide the experimental conditions needed to bound the fast digital data

acquisition results to an appropriate scope required for successful experimentation.

In this research a desired scope of experimentation would attempt to distinguish the

difference in the position measurements of the fast signals to within a centimeter

and the timing measurements of the fast signal to within 1−2 ns. A more detailed

discussion of experimental bounds and uncertainty is presented in Section 4.4.

Figure 36. The fraction of the total pulses collected by the digital oscilloscope as the
frequency (f), number of waveforms per set

(
NW/S

)
, and number of pulses per waveform

changes
(
NP/W

)
.

4.3 Scintillation Yield Findings

A MATLAB routine was generated to compare the various scintillation pho-

tons which can be detected by a particular photosensor, specifically the Hamamatsu

S10362-11 series. The energy deposited by an incident neutron was varied from 0−2.5

MeV, while the SiPMTs used in these experiments were 025C models. Theoretically,
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the dark counts produced by these SiPMTs are on the level of approximately 1−3

photons per 10 µs. This means the minimal background to overcome is at least out-

put pulses on the scale of 2 photon pulses. Other additional background noise is

produced in the overall detection system and environment. Depending on the other

equipment in the overall detection system (e.g. NIM bin, preamplifiers, oscilloscope,

power supply) and the environment (i.e. the laboratory equipment in the same room,

neighboring computers, electrical wiring in the building, boiler in the building turning

on/off), both producing noise, the additional background noise can be anywhere from

two to tens of photon pulses. Essentially, the equipment and the building provide too

noisy of an environment for precise measurements on the 1 to 100s of photon detec-

tion scale. The photosensor threshold of detection for incoming scintillation events

then needs to surpass this value to be distinguished from background noise. The data

plotted in Figure 37 shows the minimum energy deposition, per scattering event,

resulting in the collection of optical photons for several types of scintillating fibers.

According to Figure 37, if 20 total photons are collected by thel BCF-12 fiber

dual-readout Hamamatsu S10362-11-025C SiPMTs, the anticipated amount of en-

ergy imparted by the neutron is between 300−700 keV, depending on the geometry

and layers of cladding of the fiber. The number of photons collected by the SiPMTs

increases with trapping efficiency. The square geometry has a greater trapping effi-

ciency than round fibers, as do fibers with multiple cladding layers. Hamamatsu also

has other SiPMTs in the same series with varying numbers of pixels and efficiencies.

These experiments used the 025C series SiPMT; the 050C and 100C series SiPMTs

have a greater quantum efficiencies, allowing for lower levels of deposited neutron

energy to be detectable by the scintillating fiber and SiPMT system. Due to time

and budget constraints, however, the only available SiPMTs for the initial testing

were the 025Cs.
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Figure 37. Comparison of approximate number of scintillation photons detected by a
SiPMT as a function of trapping efficiency. This assumes using a Hamamatsu S10362-
11-025C Series SiPMT and a BCF-12 plastic scintillating fiber 30 cm in length with the
position-of-interaction occurring at the middle of the fiber. The trapping efficiency of
the the Saint-Gobain fibers changes with the fiber geometry and layers of cladding. In
order of top to bottom in the legend the trapping efficiencies increase as 3.44%, 4.50%,
5.60%, and 7.30%.

4.4 Spatial and Timing Resolution

The results pertaining to the spatial and timing resolution parametric study will

be presented and analyzed in this section. A time-of-flight plastic scintillating fiber

bundle neutron spectrometer is only helpful if the timing and spatial resolution are

very precise. This section presents theoretical approximations and calculations to

predict the spatial and timing resolution limits. Future research at the AFIT D-D

neutron generator will be performed to validate these predictions.

93



www.manaraa.com

The algorithm used for this parametric study calculated the energy, the energy

uncertainty, and the relative error associated with the energy calculation. These

calculations were performed with the position uncertainty defined as 1 mm and the

timing uncertainty defined as 0.1 ns; these values were chosen to bound the overall

relative percent uncertainty to less than 10%. The energy and its uncertainty for the

energy range of 0−3 MeV is shown in Figure 38. This energy range was chosen as it

corresponds to the energy of the neutrons generated by a D-D neutron generator. The

energy is calculated using the kinetic energy equation from Section 4.1.2, Equation 33.

The velocity is calculated using two matrices of distance and time, where the distance,

dx, ranges from 1−100 cm, and the time, t, ranges from 1−10 ns. The energy

uncertainty was calculated using Equation 27, where the same ranges in distance and

time are used with a distance uncertainty (σz) set to 1 mm and a timing uncertainty

(σt) set to 0.1 ns.

The results show an interesting relationship between the energy, position, and

time, where the position drastically produces greater change than changes in time.

This means that for a relative percent change in position will more greatly affect

the energy than the the same relative percent change in time. For acceptable results

the uncertainty should not be greater than 10%. A relative energy uncertainty (i.e.

σE/E) equal to 0.10 (i.e. 10%) would provide the “acceptable” position and timing

limitations of a TOF neutron spectrometer. This relative uncertainty was calculated

and is depicted in Figure 39. The plot shows contour lines, which represent the

relative energy uncertainty. The relative energy uncertainty greatly increases at∼1.75

nanoseconds for all positions and 2 cm for all times. The 10% uncertainty threshold

occurs at about 2 cm and 2 ns. This means that the energy and its uncertainty are

considered acceptable (i.e. having a relative error less than 10%) if the position and

time are greater than 2 cm and 2 ns, respectively.
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Figure 38. The energy and its uncertainty for calculated energies of 0-3 MeV and
below based on a position uncertainty of 1 mm and timing uncertainty of 0.1 ns. Note
for illustrative purposes the white region in the top left corners of both plots can be
ignored since to get the appropriate scale the values were fixed.

Calculating the energy of a neutron traversing through a scintillator using position

and time measurements with uncertainties of 1 mm and 1 ns, respectively, as inputs

to Equation 39 produces an answer with a relative error of approximately 10% or less,

provided two conditions are met. The conditions include: 1) the measured value of

distance (i.e. position) is greater than ∼2 cm, and 2) the measured time is greater

than ∼2 ns. Take as a sample calculation, a neutron measured traveling 5 cm into

a scintillator and taking 3 ns to traverse this distance, denoted as a green circle in

Figure 39. These measured values result in a calculated energy of 1.45 ± 0.141 MeV;

where the relative error is approximately 8% since the measured values are less than

the 10% relative error contour, denoted in blue, shown in Figure 39.
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Figure 39. Percent uncertainty shown as the relative percent uncertainty of σE with
respect to energy, E. The contours show a sharp increase below ∼1.75 ns and below
2 cm. This is where the ten percent uncertainty threshold is obtained for a position
uncertainty of 1 mm and a timing uncertainty of 0.1 ns. The green circle denotes an
energy of 1.45 ± 0.141 MeV at a position of 5 cm and time of 3 ns. The blue contour
line denotes a relative error of 10%.

4.5 SiPMT Findings

This section describes the various experiments and attempts to use and collect

dark count information from the silicon photomultiplier multi-pixel photon counting

photosensors. The information provided will be more of a discussion and summary

of data collected from the SiPMTs since working with the silicon photomultipliers

required many trial and error sessions. The overall goal was to verify the dark counts

of the Hamamatsu S10362-11-025C SiPMTs. The two SiPMTs used in these ex-

periments had manufacturer specified dark count measurements of 323 kcps for the
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SiPMT A and 318 kcps (Channel 1) for SiPMT B (Channel 2). As mentioned in

Section 3.6, there were several SiPMT circuit board diagrams utilized for providing a

bias voltage and means to readout the signal from the SiPMT. To save on time and

to reduce repetition of experiments, only data from the final circuit board design will

be presented in this analysis of the background counts of the SiPMTs without a fiber

or radiation source present.

The two SiPMTs mounted on the circuit board in Figure 24 were placed inside

aluminum jigs, mounted inside the aluminum box with the voltage sources connected

and set at -70 ±0.03 Volts. The signal outputs were connected to two separate pream-

plifiers, which were then connected to Channel 1 and Channel 2 of the oscilloscope.

With no source or fiber present, 2 million pulses (i.e. waveforms) were recorded for

each channel. An example of the output signal from the SiPMTs when fast acquisi-

tion mode is on is shown in Figure 40. Notice the pulses at the trigger point increase

in amplitude by approximately 0.3 V increments. The output displayed on the oscil-

loscope is as expected, since each photon detected will cause equivalent incremental

step increases in the voltage output.

The post-processing of data provides several pieces of information, including the

pulse height distribution of each SiPMT. The calculated number of dark counts are

only an approximation, as the single photon pulse height was not verified. The

smallest single photon pulse height was estimated based on data collected, then used

to estimate the number of photons resulting in pulses greater than those from single

photons. The distribution of pulses from SiPMT A (i.e. Channel 1) and SiPMT B

(i.e. Channel 2) are given in Figure 41. The distribution shows the single and double

firing pixels at 0.125 and 0.25 V, respectively, which is similar to the distribution

found in Jones’ research [3]. On close inspection, the two distributions are nearly

identical, with the number of counts varying slightly. There is also a slight decrease
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in the peak voltages from Channel 1 to Channel 2.

Figure 40. A snapshot of the oscilloscope showing a sample of the pulses produced by
Hamamatsu S10362-11-025C SiPMT. The Tektronix DPO7104 digital oscilloscope was
used with fast acquisition setting turned on. The the y-axis is at 40 mV/div and the
x-axis is at 5 ns/div. The trigger level was set to 30 mV.

The dark counts were calculated using a single photon pulse height of 0.1 V.

This means that a 0.3 V pulse will be counted as 3 photons (i.e. 3 dark counts).

The MATLAB script first went through the data finding all the local minimum and

maximum points, analyzing each waveform and marking the local minimums and

maximums when the data stopped increasing or decreasing, providing potential pulse

heights for inspection. If a pulse height was determined to be above 0.1 V, it was

considered a photon induced event. Each photon induced pulse was then divided by

0.1 V to determine if it was a multi-photon induced pulse; after eliminating all true

pulses, dark count rates of approximately 414 kcps and 475 kcps were recorded for

SiPMT A and B, respectively. These are higher than the manufacturer’s reported

values, but well below the maximum rate of 600 kcps specified for both devices.
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Figure 41. (Top) The pulse height distribution of the dark counts from SiPMT A
(Channel 1). The peaks are centered at approximately 0.125, 0.25, 0.375, and 0.5 V.
(Bottom) The pulse height distribution of the dark counts from SiPMT B (Channel 2).
The peaks are centered at approximately 0.12, 0.23, 0.34, and 0.45 V. The voltage was
set to -70 ± 0.03 V. There was no source or scintillating fiber present in the aluminum
light-tight box. Each pulse peak represents an additional pixel firing from the SiPMT.
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V. Conclusion & Recommendations

The premise of a novel time-of-flight neutron spectrometer composed of an array

of plastic scintillating fibers connected to a silicon photomultiplier is founded on the

basic concepts of a scintillator material with a high efficiency, photosensors with high

efficiency, and an fiber bundle array with a high probability of double neutron scatters.

This research attempted to address the limiting boundaries of various components of

a neutron spectrometer based on BCF-12 plastic scintillating fibers. The hope is this

research can be continued with an experimental follow-up to compare the modeling

results with real data.

Organic plastic scintillating fibers coupled with highly efficient SiPMTs for neu-

tron spectroscopy is only promising if the fibers and SiPMT are efficient. The SiPMTs

produced by Hamamatsu range from 25 to 80% in efficiency. The BCF-12 fibers pro-

duced by Saint-Gobain have a trapping efficiency of 3.44%. If other more efficient

fibers exist, then I would greatly recommend using them. The double scattering of

neutrons in the scintillator is crucial, and the 14 × 14 BCF-12 plastic scintillating

fiber bundle simulation demonstrated that only 0.359% of the neutrons incident on

the 30 cm long fiber would actually double scatter. The number of double scatters

can be increased by changing the trajectory of the incident neutrons, say for neutrons

incident in the direction of the axial direction. A 14 × 14 fiber bundle composed of

500 µm diameter fibers is ∼ 7 × 7 mm, if the array size were increased the double

scatter efficiency would increase.

The 14× 14 BCF-12 scintilating fiber bundle created in Geant4 provides valuable

simulated data for processing pertinent information pertaining to neutron scattering,

energy deposition, location of scattering events, distances, and times of the scatters.

All of this can be used to obtain desired information on expected performance of

a plastic scintillating bundle as a TOF neutron spectrometer. Experiments can be
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performed on the modeled 14 × 14 BCF-12 bundle to see how well the real bundle

compares to the model. The Geant4 simulations provide, at a minimum the funda-

mental basis that a TOF neutron spectrometer can be built out of scintillating fibers

attached to a photosensor.

Scintillators require extremely fast data acquisition since the photons are traveling

close to the speed of light. The Tektronix DPO7104 digital oscilloscope controlled

by MATLAB through TekVISA via a LAN cable provides fast data collection and

transfer. While this research only found that small fractions of the total incident

pulses will actually get recorded by the oscilloscope, some better coding of the com-

munication between the oscilloscope and computer could increase the efficiency. The

advantage of this oscilloscope is its ability to distinguish between points on the pico

and femto second time scales.

Some of the boundaries at which a proposed TOF neutron spectrometer can per-

form were determined. Based on the timing and spatial uncertainties and error prop-

agation, the position resolution and timing resolution can help to quickly determine

if a scintillator will be able to resolve the position-of-interaction well enough for its

intended application. For a spatial uncertainty of 1 mm and a timing uncertainty of

0.1 ns the uncertainty in time and position quickly reach a relative error of 10% at

approximately 1.75 ns and below 2 cm, respectively. Changing the established time

and spatial uncertainties to a desired or experimentally determined value and then

evaluating those parameters in the parametric studies performed here, will allow for

timing and spatial bounds to be understood for current or future materials.

The actual construction, testing, and experimentation of the aluminum light-tight

boxes with the SiPMTs only proved that making a light-tight apparatus is extremely

difficult and that the Hamamatsu silicon photomultiplier multi-pixel photon counting

sensors are extremely sensitive. The higher the quantum efficiency the better, thus
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the model 100C is highly recommended. The BCF-12 fibers are only generating

∼800 photons per MeV. Combine this with a very low trapping efficiency, quenching,

attenuation length losses and the number of photons reaching the end of a fiber is

severely reduced from thousands to tens of scintillation photons. Depending on the

dark counts and other background noise the minimal energy deposited by a neutron

required to distinguish a scatter from background is between 300−700 keV, depending

on the quantum efficiency of the photosensor.

Finally, all the simulations, parametric studies, and experiments performed here

are provided in the hope that the research is continued. Experimental data using the

14×14 BCF-12 scintillating fiber bundle would be a great start in continued research

towards the goal of a TOF neutron spectrometer composed of plastic scintillating

fibers. The Geant4 model results allows for future experimental results to be com-

pared. The AFIT D-D generator can provide the neutron source for the experiment.

The 14× 14 bundle should be subjected to neutrons from the D-D neutron generator

for approximately 30 minutes to have an equivalent comparison to the 1×106 Geant4

model results. The experiment requires that the fiber bundle is placed lengthwise

parallel and 6 inches away from the D-D neutron generator. The range of energies

expected to be witnessed from this exposure to the neutron generator will range from

0.3−2.3 MeV. A spatial and timing resolution of 1 mm and 1 ns will be needed to

compare experimental measurements to the analyses performed in this research. The

analyses on the timing and spectroscopy requirements for a plastic scintillating fiber

bundle time-of-flight neutron spectrometer has provided a firm foundation and to

warrant additional experiments to compliment the research. The spatial and timing

parametric studies will provide great insight to better understand the resolution lev-

els required for highly precise TOF neutron spectrometers with plastic scintillating

fibers, which remains a promising field of research.
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Appendix A. 14×14 BCF-12 Plastic Scintillating Fiber
Geant4 Post-Processing Script

%Written by 2d Lt Paul A. Clement

%29 January 2012

%Neutron Scattering in Fiber Bundle Post-Processing

% ------------------------------------------------------------------------

% Updates:

% ------------------------------------------------------------------------

% 2 Apr 13 - "...Ver2.txt" files only due to addition of scattering times

% 5 Apr 13 - Comparison of MATLAB (v^2) calculations to GEANT4 code energy

% output in form of plots added

close all

clear all

clc

% Start Clock

tic;

fprintf(’\nProgram Has Started...\n’)

%% Load GEANT4 Output File

% List of outputs for the simulations ran should be one the following:

% test1mnVer2.txt

% test5mnVer2a.txt

% test5mnVer2b.txt

% test10mnVer2.txt

% test100mnVer2.txt

Raw_Data = load(’E:\Masters Thesis\GEANT4\clement geant4\fb-build\test100mnVer2.txt’);

% ^-- Check path and change accordingly, CHANGE HERE ---------^ (*.txt)

% Column 1 = neutron # [unitless]

% Column 2 = scatter # [unitless]

% Column 3 = y/x-axis fiber identifier [unitless]

% thousands/hundreds postion is y-axis

% tens/ones position is x-axis

% Examples: 1104 --> y-axis = 11, x-axis = 4

% 300 --> y-axis = 3, x-axis = 0

% Column 4 = location in fiber in [mm] from z-axis center

% Column 5 = energy in [keV] imparted from collision

% Column 6 = time in [ps] at scatter w.r.t. neutron birth

% Sample Raw_Data

% 59 1 309 -21.3482005336216 1325.60422901997 1066.86528777748

% 0 0 0 0 0 0

% 105 1 100 -35.2520903974052 1263.15390159812 1698.81495918306

% 0 0 0 0 0 0

% 117 1 304 -26.5427878736108 228.517024084795 1310.07943337441

% 117 2 405 -26.8525676978072 632.237877118428 1332.21273046707

% 0 0 0 0 0 0

% 136 1 113 1.96765346606238 68.8682387677773 407.051507238058

% 0 0 0 0 0 0

% Remove zero rows in "Raw_Data"

Raw_Data( all(~Raw_Data,2), : ) = [];

%% Scattering Events and Energy Deposition

fprintf(’\nScattering Tallies and Energy Deposition has Started...\n’)
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% Definitions

m_n = 1.008665*931.494*1.602E-13/(3E8)^2; % [kg] Mass of a Neutron

keV_per_J = (1/1.602E-16); % (1 [keV] / 1.602E-16 [J])

% Initialize

n_f = 14; % <-- Number of fibers in each row and column

n_particles = 10E6; % <-- Number of incident neutron particles (CHANGE)

scatters(4,1) = zeros;

y_loc(n_particles,4) = zeros;

x_loc(n_particles,4) = zeros;

z_loc(n_particles,4) = zeros;

fiber_bundle_s = zeros(n_f+1); % <-- Need desired amount +1 in dimmensions for pcolor

fiber_bundle_d = zeros(n_f+1); % <-- Need desired amount +1 in dimmensions for pcolor

fiber_bundle_m = zeros(n_f+1); % <-- Need desired amount +1 in dimmensions for pcolor

fiber_bundle_q = zeros(n_f+1); % <-- Need desired amount +1 in dimmensions for pcolor

scatt_energy(n_particles,4) = zeros;

remain_energy1(n_particles,1) = zeros;

remain_energy2(n_particles,1) = zeros;

remain_energy3(n_particles,1) = zeros;

remain_energy4(n_particles,1) = zeros;

dist_btwn_scatt1(n_particles,1) = zeros;

dist_btwn_scatt2(n_particles,1) = zeros;

dist_btwn_scatt3(n_particles,1) = zeros;

dist_btwn_scatt4(n_particles,1) = zeros;

dEdx_s(26,126) = zeros; % <-- Need desired amount +1 in dimmensions for pcolor

dEdx_d(26,126) = zeros; % (26 bins of 100 [keV], 101 bins of 1 [mm])

dEdx_m(26,126) = zeros;

dEdx_q(26,126) = zeros;

time_s(n_particles,1) = zeros;

time_d(n_particles,1) = zeros;

time_m(n_particles,1) = zeros;

time_q(n_particles,1) = zeros;

velocity_s(n_particles,1) = zeros;

velocity_d(n_particles,1) = zeros;

velocity_m(n_particles,1) = zeros;

velocity_q(n_particles,1) = zeros;

E_calc_s(n_particles,1) = zeros;

E_calc_d(n_particles,1) = zeros;

E_calc_m(n_particles,1) = zeros;

E_calc_q(n_particles,1) = zeros;

E_to_E_calc_s(n_particles,2) = zeros;

E_to_E_calc_d(n_particles,2) = zeros;

E_to_E_calc_m(n_particles,2) = zeros;

E_to_E_calc_q(n_particles,2) = zeros;

j = 1;

% Scatter Tallies and Energy Imparted in each Fiber

for i = 1:1:length(Raw_Data)

% Single

if Raw_Data(i,2) == 1

scatters(1,1) = scatters(1,1) + 1; % <-- Scatter Tally

y_loc(j,1) = ((Raw_Data(i,3)-mod(Raw_Data(i,3),100))/100)+1; % <-- Fiber y-axis Location

x_loc(j,1) = (mod(Raw_Data(i,3),100))+1; % <-- Fiber x-axis Location

z_loc(j,1) = Raw_Data(i,4);

fiber_bundle_s(y_loc(j,1),x_loc(j,1)) = fiber_bundle_s(y_loc(j,1),x_loc(j,1))...

+ Raw_Data(i,5);

% ^-- Energy Deposited in [keV]

scatt_energy(j,1) = Raw_Data(i,5); % <-- Retable neutron scatters

% ^-- Columns 1-4 correspond to scatters 1-4 in [keV]

remain_energy1(j,1) = 2500 - scatt_energy(j,1);

% ^-- Remaining E_n after 1st scatter in [keV]

dist_btwn_scatt1(j,1) = sqrt(((x_loc(j,1)*250E-4 - 1))^2 ...

+ ((y_loc(j,1) - 0)*250E-4)^2 ...

+ ((Raw_Data(i,4) - 0 )*1E-1)^2);

% ^-- Distance traveled between 0th and 1st n-scatter in [cm]

dEdx_s(floor(remain_energy1(j,1)/100)+1,floor(dist_btwn_scatt1(j,1)*10)+1) = ...
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dEdx_s(floor(remain_energy1(j,1)/100)+1,floor(dist_btwn_scatt1(j,1)*10)+1) + 1;

% ^-- Produces heat map, or contour map, or pcolor map

time_s(j,1) = Raw_Data(i,6);

% ^-- Time from neutron birth to 1st scatter in [ps]

velocity_s(j,1) = dist_btwn_scatt1(j,1)/time_s(j,1)*(1E12/1)*(1/1E2);

% ^-- Velocity of neutron from birth to 1st scatter in [m/s]

E_calc_s(j,1) = 0.5*m_n*(velocity_s(j,1))^2*keV_per_J;

% ^-- Energy (calc) of neutron from birth to 1st scatter in [keV]

E_to_E_calc_s(j,1) = 2500;

% ^-- Energy provided by GEANT4 model from birth to 1st scatter in [keV]

E_to_E_calc_s(j,2) = E_calc_s(j,1);

% ^-- Energy (calc) provided by MATLAB code from birth to 1st scatter in [keV]

% Double

elseif Raw_Data(i,2) == 2

scatters(2,1) = scatters(2,1) + 1;

y_loc(j-1,2) = ((Raw_Data(i,3)-mod(Raw_Data(i,3),100))/100)+1; % <-- Fiber y-axis Location

x_loc(j-1,2) = (mod(Raw_Data(i,3),100))+1; % <-- Fiber x-axis Location

z_loc(j-1,2) = Raw_Data(i,4);

fiber_bundle_d(y_loc(j-1,2),x_loc(j-1,2)) = fiber_bundle_d(y_loc(j-1,2),x_loc(j-1,2))...

+ Raw_Data(i,5);

% ^-- Energy Deposited in [keV]

scatt_energy(j-1,2) = Raw_Data(i,5);% <-- Retable neutron scatters

% ^-- Columns 1-4 correspond to scatters 1-4 in [keV]

remain_energy2(j-1,1) = remain_energy1(j-1,1) - scatt_energy(j-1,2);

% ^-- Remaining E_n after 2nd scatter in [keV]

dist_btwn_scatt2(j-1,1) = sqrt(((x_loc(j-1,2) - x_loc(j-1,1))*250E-4)^2 ...

+ ((y_loc(j-1,2) - y_loc(j-1,1))*250E-4)^2 ...

+ ((Raw_Data(i,4) - Raw_Data(i-1,4))*1E-1)^2);

% ^-- Distance traveled between 1st and 2nd n-scatter in [cm]

dEdx_d(floor(remain_energy2(j-1,1)/100)+1,floor(dist_btwn_scatt2(j-1,1)*10)+1) = ...

dEdx_d(floor(remain_energy2(j-1,1)/100)+1,floor(dist_btwn_scatt2(j-1,1)*10)+1) + 1;

% ^-- Produces heat map, or contour map, or pcolor map

time_d(j-1,1) = Raw_Data(i,6) - time_s(j-1,1);

% ^-- Time from 1st to 2nd n-scatter in [ps]

velocity_d(j-1,1) = dist_btwn_scatt2(j-1,1)/time_d(j-1,1)*(1E12/1)*(1/1E2);

% ^-- Velocity of neutron from 1st to 2nd n-scatter in [m/s]

E_calc_d(j-1,1) = 0.5*m_n*(velocity_d(j-1,1))^2*keV_per_J;

% ^-- Energy (calc) of neutron from 1st to 2nd n-scatter in [keV]

E_to_E_calc_d(j-1,1) = remain_energy1(j-1,1);

% ^-- Energy provided by GEANT4 model from 1st to 2nd n-scatter in [keV]

E_to_E_calc_d(j-1,2) = E_calc_d(j-1,1);

% ^-- Energy (calc) provided by MATLAB code from 1st to 2nd n-scatter in [keV]

j = j - 1;

% Triple

elseif Raw_Data(i,2) == 3

scatters(3,1) = scatters(3,1) + 1;

y_loc(j-1,3) = ((Raw_Data(i,3)-mod(Raw_Data(i,3),100))/100)+1; % <-- Fiber y-axis Location

x_loc(j-1,3) = (mod(Raw_Data(i,3),100))+1; % <-- Fiber x-axis Location

z_loc(j-1,3) = Raw_Data(i,4);

fiber_bundle_m(y_loc(j-1,3),x_loc(j-1,3)) = fiber_bundle_m(y_loc(j-1,3),x_loc(j-1,3))...

+ Raw_Data(i,5);

% ^-- Energy Deposited in [keV]

scatt_energy(j-1,3) = Raw_Data(i,5);% <-- Retable neutron scatters

% ^-- Columns 1-4 correspond to scatters 1-4 in [keV]

remain_energy3(j-1,1) = remain_energy2(j-1,1) - scatt_energy(j-1,3);

% ^-- Remaining E_n after 3rd scatter in [keV]

dist_btwn_scatt3(j-1,1) = sqrt(((x_loc(j-1,3) - x_loc(j-1,2))*250E-4)^2 ...

+ ((y_loc(j-1,3) - y_loc(j-1,2))*250E-4)^2 ...

+ ((Raw_Data(i,4) - Raw_Data(i-1,4))*1E-1)^2);

% ^-- Distance traveled between 2nd and 3rd n-scatter in [cm]

dEdx_m(floor(remain_energy3(j-1,1)/100)+1,floor(dist_btwn_scatt3(j-1,1)*10)+1) = ...

dEdx_m(floor(remain_energy3(j-1,1)/100)+1,floor(dist_btwn_scatt3(j-1,1)*10)+1) + 1;

% ^-- Produces heat map, or contour map, or pcolor map

time_m(j-1,1) = Raw_Data(i,6) - time_d(j-1,1);

% ^-- Time from 2nd to 3rd n-scatter in [ps]

velocity_m(j-1,1) = dist_btwn_scatt3(j-1,1)/time_m(j-1,1)*(1E12/1)*(1/1E2);
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% ^-- Velocity of neutron from 2nd to 3rd n-scatter in [m/s]

E_calc_m(j-1,1) = 0.5*m_n*(velocity_m(j-1,1))^2*keV_per_J;

% ^-- Energy (calc) of neutron from 2nd to 3rd n-scatter in [keV]

E_to_E_calc_m(j-1,1) = remain_energy2(j-1,1);

% ^-- Energy provided by GEANT4 model from 2nd to 3rd n-scatter in [keV]

E_to_E_calc_m(j-1,2) = E_calc_m(j-1,1);

% ^-- Energy (calc) provided by MATLAB code from 2nd to 3rd n-scatter in [keV]

j = j - 1;

% Quad or More

elseif Raw_Data(i,2) >= 4

scatters(4,1) = scatters(4,1) + 1;

y_loc(j-1,4) = ((Raw_Data(i,3)-mod(Raw_Data(i,3),100))/100)+1; % <-- Fiber y-axis Location

x_loc(j-1,4) = (mod(Raw_Data(i,3),100))+1; % <-- Fiber x-axis Location

z_loc(j-1,4) = Raw_Data(i,4);

fiber_bundle_q(y_loc(j-1,4),x_loc(j-1,4)) = fiber_bundle_q(y_loc(j-1,4),x_loc(j-1,4))...

+ Raw_Data(i,5);

% ^-- Energy Deposited in [keV]

scatt_energy(j-1,4) = Raw_Data(i,5);% <-- Retable neutron scatters

% ^-- Columns 1-4 correspond to scatters 1-4 in [keV]

remain_energy4(j-1,1) = remain_energy3(j-1,1) - scatt_energy(j-1,4);

% ^-- Remaining E_n after 4th scatter in [keV]

dist_btwn_scatt4(j-1,1) = sqrt(((x_loc(j-1,3) - x_loc(j-1,2))*250E-4)^2 ...

+ ((y_loc(j-1,3) - y_loc(j-1,2))*250E-4)^2 ...

+ ((Raw_Data(i,4) - Raw_Data(i-1,4))*1E-1)^2);

% ^-- Distance traveled between 3rd and 4th n-scatter in [cm]

dEdx_q(floor(remain_energy4(j-1,1)/100)+1,floor(dist_btwn_scatt4(j-1,1)*10)+1) = ...

dEdx_q(floor(remain_energy4(j-1,1)/100)+1,floor(dist_btwn_scatt4(j-1,1)*10)+1) + 1;

% ^-- Produces heat map, or contour map, or pcolor map

time_q(j-1,1) = Raw_Data(i,6) - time_m(j-1,1);

% ^-- Time from 3rd to 4th n-scatter in [ps]

velocity_q(j-1,1) = dist_btwn_scatt4(j-1,1)/time_q(j-1,1)*(1E12/1)*(1/1E2);

% ^-- Velocity of neutron from 3rd to 4th scatter in [m/s]

E_calc_q(j-1,1) = 0.5*m_n*(velocity_q(j-1,1))^2*keV_per_J;

% ^-- Energy (calc) of neutron from 3rd to 4th scatter in [keV]

E_to_E_calc_q(j-1,1) = remain_energy3(j-1,1);

% ^-- Energy provided by GEANT4 model from 3rd to 4th scatter in [keV]

E_to_E_calc_q(j-1,2) = E_calc_q(j-1,1);

% ^-- Energy (calc) provided by MATLAB code from 3rd to 4th scatter in [keV]

j = j - 1;

else

continue

end

j = j + 1;

% Print percent complete

percent = i/length(Raw_Data)*100;

fprintf(’\nScattering Tallies and Energy Deposition is at %8.4f %% taking %6.2f sec’,percent, toc)

end

fprintf(’\nScatter Tallies and Energy Deposition is Complete taking %6.2f sec...\n’,toc)

fiber_bundle_t = fiber_bundle_q + fiber_bundle_m + fiber_bundle_d + fiber_bundle_s;

dEdx_t = dEdx_q + dEdx_m + dEdx_d + dEdx_s;

dEdx_final = dEdx_t(1:26,1:51);

%% Plot Scattering Events (Un-Normalized)

figure(1)

bar(scatters,0.5,’k’);

hold on

text(1:1:4,scatters,num2str(scatters,’%0.0f’),...

’HorizontalAlignment’,’center’,’VerticalAlignment’,’bottom’,’fontsize’,20)

%title(’Histogram of Neutron Scatters in a 14x14 BCF-12 PSF Bundle’,’fontsize’,20);

xlabel(’Scatters by a Single Neutron [#]’,’fontsize’,20);
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ylabel(’Counts [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(1),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nHistogram of Scattering (Normalized) Complete taking %6.2f sec...\n’,toc)

%% Plot Scattering Events (Normalized)

figure(2)

bar(scatters./(n_particles*10),0.5,’k’);

hold on

text(1:1:4,scatters./(n_particles*10),num2str(scatters./(n_particles*10),’%0.5f’),...

’HorizontalAlignment’,’center’,’VerticalAlignment’,’bottom’,’fontsize’,20)

%title(’Normalized Histogram of Number of Neutron Scatters in a 14x14 BCF-12 PSF Bundle’,...

% ’fontsize’,20);

xlabel(’Scatters by a Single Neutron [#]’,’fontsize’,20);

ylabel(’Fraction of Incident Neutrons [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(2),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nHistogram of Scattering (Un-Normalized) Complete taking %6.2f sec...\n’,toc)

%% Plot Scattering with Energy Deposition Events

figure(3)

subplot(2,2,1)

pcolor(fiber_bundle_t);

colormap(hot(128));

colorbar;

title(’Total Energy Deposition’,’fontsize’,20);

xlabel(’x-axis Fiber [#]’,’fontsize’,20);

ylabel(’y-axis Fiber [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[1 15],’xtick’,(2:2:14),’xtickLabel’,(2:2:14),...

’ylim’,[1 15],’ytick’,(2:2:14),’ytickLabel’,(2:2:14));

subplot(2,2,2)

pcolor(fiber_bundle_s);

colormap(hot(128));

colorbar;

title(’1st Scatter Energy Deposition’,’fontsize’,20);

xlabel(’x-axis Fiber [#]’,’fontsize’,20);

ylabel(’y-axis Fiber [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[1 15],’xtick’,(2:2:14),’xtickLabel’,(2:2:14),...

’ylim’,[1 15],’ytick’,(2:2:14),’ytickLabel’,(2:2:14));

subplot(2,2,3)

pcolor(fiber_bundle_d);

colormap(hot(128));

colorbar;

title(’2nd Scatter Energy Deposition’,’fontsize’,20);

xlabel(’x-axis Fiber [#]’,’fontsize’,20);

ylabel(’y-axis Fiber [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[1 15],’xtick’,(2:2:14),’xtickLabel’,(2:2:14),...

’ylim’,[1 15],’ytick’,(2:2:14),’ytickLabel’,(2:2:14));

subplot(2,2,4)

pcolor(fiber_bundle_m+fiber_bundle_q);

colormap(hot(128));

colorbar;

title(’3rd & 4th Scatters Energy Deposition’,’fontsize’,20);

xlabel(’x-axis Fiber [#]’,’fontsize’,20);

ylabel(’y-axis Fiber [#]’,’fontsize’,20);
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set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[1 15],’xtick’,(2:2:14),’xtickLabel’,(2:2:14),...

’ylim’,[1 15],’ytick’,(2:2:14),’ytickLabel’,(2:2:14));

set(figure(3),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nFiber Bundle Cross-Section Scatter Heat Map Complete taking %6.2f sec...\n’,toc)

%% Remove "Zero Rows" and "Zero Columns"

% Remove zero rows in "x_loc, y_loc, z_loc"

x_loc( all(~x_loc,2), : ) = [];

y_loc( all(~y_loc,2), : ) = [];

z_loc( all(~z_loc,2), : ) = [];

% Remove zero rows in "dist_btwn_scatt"

dist_btwn_scatt1( all(~dist_btwn_scatt1,2), : ) = [];

dist_btwn_scatt2( all(~dist_btwn_scatt2,2), : ) = [];

dist_btwn_scatt3( all(~dist_btwn_scatt3,2), : ) = [];

dist_btwn_scatt4( all(~dist_btwn_scatt4,2), : ) = [];

% Remove zero rows in "scatt_energy"

scatt_energy( all(~scatt_energy,2), : ) = [];

% Remove zero columns in "scatt_energy" <-- Just an Example if needed

%scatt_energy( :, all(~scatt_energy,1) ) = [];

% Remove zero rows in "remain_energy"

remain_energy1( all(~remain_energy1,2), : ) = [];

remain_energy2( all(~remain_energy2,2), : ) = [];

remain_energy3( all(~remain_energy3,2), : ) = [];

remain_energy4( all(~remain_energy4,2), : ) = [];

% Remove zero rows in "time"

time_s( all(~time_s,2), : ) = [];

time_d( all(~time_d,2), : ) = [];

time_m( all(~time_m,2), : ) = [];

time_q( all(~time_q,2), : ) = [];

% Remove zero rows in "velocity"

velocity_s( all(~velocity_s,2), : ) = [];

velocity_d( all(~velocity_d,2), : ) = [];

velocity_m( all(~velocity_m,2), : ) = [];

velocity_q( all(~velocity_q,2), : ) = [];

% Remove zero rows in "E_calc"

E_calc_s( all(~E_calc_s,2), : ) = [];

E_calc_d( all(~E_calc_d,2), : ) = [];

E_calc_m( all(~E_calc_m,2), : ) = [];

E_calc_q( all(~E_calc_q,2), : ) = [];

% Remove zero rows in "E_calc"

E_to_E_calc_s( all(~E_to_E_calc_s,2), : ) = [];

E_to_E_calc_d( all(~E_to_E_calc_d,2), : ) = [];

E_to_E_calc_m( all(~E_to_E_calc_m,2), : ) = [];

E_to_E_calc_q( all(~E_to_E_calc_q,2), : ) = [];

fprintf(’\nFiber Bundle Removing Rows/Columns of Zeros Complete taking %6.2f sec...\n’,toc)

%% Histogram of Distance (Lambda) Between Scatters

% Histogram of 1st to 2nd Scatter

figure(4)

%subplot(3,1,1)

hist(dist_btwn_scatt2(:,1),100)
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hold on

%title(’Histogram of Distance Between 1st to 2nd n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Counts [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(4),’units’,’normalize’,’outerposition’,[0 0 1 1]);

h = findobj(gca,’type’,’patch’);

set(h,’facecolor’,’c’,’edgecolor’,’k’)

% Histogram 2nd to 3rd Scatter

figure(5)

%subplot(3,1,2)

hist(dist_btwn_scatt3(:,1),100)

hold on

%title(’Histogram of Distance Between 2nd to 3rd n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Counts [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(5),’units’,’normalize’,’outerposition’,[0 0 1 1]);

h = findobj(gca,’type’,’patch’);

set(h,’facecolor’,’c’)

% Histogram 3rd to 4th Scatter

figure(6)

%subplot(3,1,3)

hist(dist_btwn_scatt4(:,1),100)

hold on

%title(’Histogram of Distance Between 3rd to 4th n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Counts [#]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(6),’units’,’normalize’,’outerposition’,[0 0 1 1]);

h = findobj(gca,’type’,’patch’);

set(h,’facecolor’,’c’,’edgecolor’,’k’)

%set(figure(4),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%% Scatter Plot of Energy vs. Distance

% Scatter Plot of 1st to 2nd Scatter

figure(7)

%subplot(3,1,1)

scatter(dist_btwn_scatt2(:,1),remain_energy2(:,1),’b.’)

hold on

%title(’Energy and Distance Between 1st to 2nd n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Energy, E [keV]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(7),’units’,’normalize’,’outerposition’,[0 0 1 1]);

% Scatter Plot of 2nd to 3rd Scatter

figure(8)

%subplot(3,1,2)

scatter(dist_btwn_scatt3(:,1),remain_energy3(:,1),’b.’)

hold on

%title(’Energy and Distance Between 2nd to 3rd n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Energy, E [keV]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(8),’units’,’normalize’,’outerposition’,[0 0 1 1]);

% Scatter Plot of 3rd to 4th Scatter

figure(9)

%subplot(3,1,3)

scatter(dist_btwn_scatt4(:,1),remain_energy4(:,1),’b.’)
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hold on

%title(’Energy and Distance Between 3rd to 4th n-Scatter’,’fontsize’,20);

xlabel(’Distance, \lambda [cm]’,’fontsize’,20);

ylabel(’Energy, E [keV]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20);

set(figure(9),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%set(figure(7),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nFiber Bundle Histogram of Rho Complete taking %6.2f sec...\n’,toc)

%% Energy and Distance (Lambda) Between Scatters Binning Contour Map

figure(10)

%subplot(2,1,1)

pcolor(dEdx_final);

hold on

colormap(hot(128));

colorbar;

title(colorbar,’Counts [#]’,’fontsize’,20)

%title(’Distribution of Energy and Distance Between All n-Scatters’,’fontsize’,20);

xlabel(’Distance, \lambda [mm]’,’fontsize’,20);

ylabel(’Energy, E [MeV]’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[1 51],’xtick’,(5:5:50),’xtickLabel’,(5:5:50),...

’ylim’,[1 26],’ytick’,(5:5:25),’ytickLabel’,(0.5:0.5:2.5));

set(figure(10),’units’,’normalize’,’outerposition’,[0 0 1 1]);

figure(11)

%subplot(2,1,2)

mesh(dEdx_final,’FaceColor’,’interp’);

hold on

colormap(hot(128));

%colorbar;

%title(colorbar,’Counts [#]’,’fontsize’,20)

%title(’Distribution of Energy and Distance Between All n-Scatters’);

xlabel(’Distance, \lambda [mm]’,’fontsize’,20);

ylabel(’Energy, E [MeV]’,’fontsize’,20);

zlabel(’Counts [#]’,’fontsize’,20);

set(gca,’fontsize’,20,...

’xlim’,[1 51],’xtick’,(5:5:50),’xtickLabel’,(5:5:50),...

’ylim’,[1 26],’ytick’,(5:5:25),’ytickLabel’,(0.5:0.5:2.5));

% Uncomment one of the sets below (top = 1 mn, mid = 5 mn, bottom = 100 mn)

%set(gca,’zlim’,[1 1000],’ztick’,(0:250:1000),’ztickLabel’,(0:2500:10000));

%set(gca,’zlim’,[1 10000],’ztick’,(0:2500:10000),’ztickLabel’,(0:2.5:10));

set(gca,’zlim’,[1 80000],’ztick’,(0:20000:80000),’ztickLabel’,(0:2:8));

set(figure(11),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%set(figure(10),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nFiber Bundle dE and dx Binning Complete taking %6.2f sec...\n’,toc)

%% Comparison of GEANT4 Energy to MATLAB Energy (E:E_calc)

% Initialize

x = (0:1:2500);

y = x;

% Not really important (uncomment if really needed)

% figure(12)

% scatter(E_to_E_calc_s(:,1),E_to_E_calc_s(:,2),’b.’)

% hold on

% %lsline;
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% plot(x,y,’r-’);

% title(’Compare GEANT4 & MATLAB Energy for 0 to 1st n-Scatter’,’fontsize’,20);

% xlabel(’GEANT4 Energy’,’fontsize’,20);

% ylabel(’MATLAB Energy $$\left(\frac{mv^{2}}{2}\right)$$’,’interpreter’,’latex’,’fontsize’,20);

% set(gca,’box’,’on’,’fontsize’,20,...

% ’xlim’,[2499 2501],’xtick’,(2499:0.5:2501),’xtickLabel’,(2499:0.5:2501),...

% ’ylim’,[1300 2500],’ytick’,(1300:200:2500),’ytickLabel’,(1300:200:2500));

% set(figure(12),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%%

figure(13)

scatter(E_to_E_calc_d(:,1),E_to_E_calc_d(:,2),’b.’)

hold on

lsline;

plot(x,y,’r-’);

%title(’Compare GEANT4 & MATLAB Energy for 1st to 2nd n-Scatter’,’fontsize’,20);

xlabel(’GEANT4 Energy’,’fontsize’,20);

ylabel(’MATLAB Energy $$\left(\frac{mv^{2}}{2}\right)$$’,’interpreter’,’latex’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[0 2500],’xtick’,(0:250:2500),’xtickLabel’,(0:250:2500),...

’ylim’,[0 10000],’ytick’,(0:1000:10000),’ytickLabel’,(0:1000:10000));

set(figure(13),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%%

figure(14)

scatter(E_to_E_calc_m(:,1),E_to_E_calc_m(:,2),’b.’)

hold on

lsline;

plot(x,y,’r-’);

%title(’Compare GEANT4 & MATLAB Energy for 2nd to 3rd n-Scatter’,’fontsize’,20);

xlabel(’GEANT4 Energy’,’fontsize’,20);

ylabel(’MATLAB Energy $$\left(\frac{mv^{2}}{2}\right)$$’,’interpreter’,’latex’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[0 2500],’xtick’,(0:250:2500),’xtickLabel’,(0:250:2500),...

’ylim’,[0 2500],’ytick’,(0:250:2500),’ytickLabel’,(0:250:2500));

set(figure(14),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%%

figure(15)

scatter(E_to_E_calc_q(:,1),E_to_E_calc_q(:,2),’b.’)

hold on

lsline;

plot(x,y,’r-’);

%title(’Compare GEANT4 & MATLAB Energy for 3rd to 4th n-Scatter’,’fontsize’,20);

xlabel(’GEANT4 Energy’,’fontsize’,20);

ylabel(’MATLAB Energy $$\left(\frac{mv^{2}}{2}\right)$$’,’interpreter’,’latex’,’fontsize’,20);

set(gca,’box’,’on’,’fontsize’,20,...

’xlim’,[0 2500],’xtick’,(0:250:2500),’xtickLabel’,(0:250:2500),...

’ylim’,[0 10000],’ytick’,(0:1000:10000),’ytickLabel’,(0:1000:10000));

set(figure(15),’units’,’normalize’,’outerposition’,[0 0 1 1]);

fprintf(’\nFiber Bundle Comparison of GEANT4 to MATLAB E Calculations Complete taking %6.2f sec...\n’,toc)

%% Completion Output

% Stop Clock

elapsed_time = toc;

fprintf(’\nFiber Bundle Neutron Scattering Simulation Post Processing took %6.2f [s]\n’,elapsed_time)
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Appendix B. Dual Ended Readout Oscilloscope Script

%% Data Input

clc;

clear all;

close all;

%%% Connection Variables

visa_brand = ’tek’; % set to ’tek’ for textronix scopes

visa_address = ’TCPIP::169.254.235.51::INSTR’; % use oscilloscope ip address

buffer = 10000 * 1024; %10000 KiB (Originally --> 2000 * 1024; %2000 KiB)

%%% Configuration Variables

nFrames = 1000; % Number of waveforms to capture in FastFrame mode

nRecord = 1000; % Number of points in each individual waveform

nSets = 10; % How many datasets do you want to record?

%%%%% Set scope timing properties

Time_Window = 100E-9; %width of time axis

%%%%%% Set properties for Channel #1

Ch1_status= ’ON’ ;% Turns input for channel 1 on/off

Ch1_Termination = 1E6 ;% Sets input impedance in Ohms (use 50)

Ch1_VPos = 0.0; % from -5.0 to 5.0 (the divisions on vertical axis)

Ch1_HPos = 5; % from 0 to 100 (divisions across the horizontal axis)

Ch1_Offset = 0.0; % [V]

Ch1_Scale = 0.500; % [V]

%%%%%% Set properties for Channel #2

Ch2_status= ’OFF’ ;% Turns input for channel 2 on/off

Ch2_Termination = 1E6 ;% Sets input impedance in Ohms (use 50)

Ch2_VPos = 0.0; % from -5.0 to 5.0 (the divisions on vertical axis)

Ch2_HPos = 5; % from 0 to 100 (divisions across the horizontal axis)

Ch2_Offset = 0.0; % [V]

Ch2_Scale = 0.500; % [V]

%%%%% Set Trigger Settings %%%%%

Trigger_Type=’Edge’ ; % Edge mode trigger

Trigger_Edge_Slope=’Rise’ ; % Falling slope

Trigger_Level=0.250 ; % Set trigger voltage level

Trigger_Mode=’Normal’ ; % Set trigger to Normal, apparently "Auto" is bad

%-------------------------------------------------------------------------%

% End Data Input %

%-------------------------------------------------------------------------%

%% Initialize Scope

%%% Open Instrument

fclose(’all’); % close any open files - useful if this script was interrupted and you want to use it again

dpo = visa(visa_brand, visa_address, ’InputBuffer’, buffer, ’OutputBuffer’, buffer); % create visa object,

no instrument driver required!

fopen(dpo); % open the instrument so that commands can be written to it

%fwrite(dpo,’*RST’); % Reset scope to factory defaults - reset any inadvertant scope setting changes.

fprintf(’Scope reset to factory defaults.\n’);

%% Configure Scope

%%% Configuration Variables

fprintf(’Configuring scope....’);

frames = nFrames; % Number of waveforms to capture in FastFrame mode

record = nRecord; % Number of points in each individual waveform

%%%%%% Set properties for Channel #1

if strcmpi(’ON’,Ch1_status)

Ch1VPos = Ch1_VPos; % from -5.0 to 5.0 (the divisions on vertical axis)
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Ch1HPos = Ch1_HPos; % from 0 to 100 (divisions across the horizontal axis)

Ch1Offset = Ch1_Offset; % [V]

Ch1Scale = Ch1_Scale; % [V]

fwrite(dpo,[’Ch1:Termination ’ num2str(Ch1_Termination)]) % Sets input impedance in Ohms (use 50)

fwrite(dpo,[’Select:Ch1 ’ Ch1_status]); % Turns input for channel 1 on

fprintf(dpo,’ch1:Scale %i’, Ch1Scale); % Sets vertical scale for channel 1

fprintf(dpo,’CH1:Position %i’, Ch1VPos); % Aligns channel 1

fprintf(dpo,’Ch1:Offset %i’, Ch1Offset); % Sets channel 1 offset

end

%%%%%% Set channel #2 Properties

if strcmpi(’ON’,Ch2_status)

Ch2VPos = Ch2_VPos; % from -5.0 to 5.0 (the divisions on vertical axis)

Ch2HPos = Ch2_HPos; % from 0 to 100 (divisions across the horizontal axis)

Ch2Offset = Ch2_Offset; % [V]

Ch2Scale = Ch2_Scale; % [V]

fwrite(dpo,[’Ch2:Termination ’ num2str(Ch2_Termination)]) % Sets input impedance in Ohms (use 50)

fwrite(dpo,[’Select:Ch2 ’ Ch2_status]); % Turns input for channel 2 on

fprintf(dpo,’ch2:Scale %i’, Ch2Scale); % Sets vertical scale for channel 2

fprintf(dpo,’CH2:Position %i’, Ch2VPos); % Aligns channel 2

fprintf(dpo,’Ch2:Offset %i’, Ch2Offset); % Sets channel 2 offset

end

%%%%% Set scope timing properties

TimeWindow = Time_Window; %width of time axis

TimeStep = TimeWindow/record; % Returns seconds per point

timearray = (1:1:record)*(TimeWindow/record)*1E9; % Array of time

fprintf(dpo,’Horizontal:Scale %i’, TimeWindow); % Sets time scale

fprintf(dpo,’Horizontal:AcqLength %i’, record); % Sets time resolution

%%%%%vSet Trigger Settings%%%%%

fwrite(dpo,[’Trigger:A:Type ’ Trigger_Type]); % Edge mode trigger

fwrite(dpo,[’Trigger:A:Edge:Slope ’ Trigger_Edge_Slope]); % Falling slope

fwrite(dpo,[’Trigger:A:Level ’ num2str(Trigger_Level)]); % Set trigger voltage level

fprintf(dpo,[’Trigger:A:Mode ’ Trigger_Mode]); % Set trigger to Normal, apparently "Auto" is bad

%%%%%% Create variable with data channels

Data_Channels=[];

if strcmpi(’on’,Ch1_status)

Data_Channels=’Ch1’;

end

if strcmpi(’on’,Ch2_status) && isempty(Data_Channels)

Data_Channels=’Ch2’;

elseif strcmpi(’on’,Ch2_status)

Data_Channels=[Data_Channels ’, Ch2’];

end

%%%%%% Write general commands to O-scope

fwrite(dpo,’ACQ:STATE 0’); % Turn off acquisition before we change scope settings

fwrite(dpo,’HEAD 0’); % Turn off header information

fwrite(dpo,’ACQUIRE:MODE SAMPLE’); %Sets sampling mode to Sample mode

fwrite(dpo,’ACQUIRE:SAMPLINGMODE RT’); % Set Real Time sampling mode

fwrite(dpo,’HOR:MODE MANUAL’); % Enable manual adjustment of horizontal settings

fprintf(dpo,’HOR:MODE RECORD %i’, record); % Set number of points on horizontal axis

fwrite(dpo,’HOR:FAST:STATE 1’); % Turn on FastFrame mode

fprintf(dpo,’HOR:FAST:COUNT %i’, frames); % Set number of waveforms to capture per FastFrame acquisition

fprintf(dpo,’DATA:START 0’); % Sets the beginning of the individual waveform data to transfer (use 0)

fprintf(dpo,’DATA:STOP %i’, record); % Sets the end of the individual waveform data to transfer

fwrite(dpo, ’DATA:ENCDG SRIBINARY’); % Set data encoding to least significant byte first, signed integer

fprintf(dpo,’WFMInpre:ENCDG BINARY’); % Sets incoming data to binary format

fprintf(dpo,’WFMInpre:BN_FMT RI’); % Set signed integer

fprintf(dpo,’WFMInpre:BYT_OR LSB’); %Transfer Least Significant Bit first

fprintf(dpo,’WFMInpre:BYT_NR 1’);%Set 1 byte format = int8

fprintf(dpo,’WFMOutpre:BYT_NR 1’); %Set 1 byte format = int16

fprintf(dpo,’WFMOutpre:BN_FMT RI’); %Set signed integer
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fprintf(dpo,’WFMOutpre:BYT_OR LSB’); %Transfer Least Significant Bit first

fwrite(dpo,[’DATA:SOURCE ’ Data_Channels]); % Sets data source to Channel 1, 2, 3, 4

query(dpo,’WFMOutpre:YMult?’);

if strcmpi(’on’, Ch1_status)

Ch1YMult = str2double(query(dpo,’WFMOutpre:YMult?’)); % Returns vertical scale factor

Ch1Yoff = -Ch1VPos*Ch1Scale; % Calculate offset from zero

fprintf(dpo,’Horizontal:Position %i’, Ch1HPos); % Places signal at designated horizontal location

end

if strcmpi(’on’, Ch2_status)

Ch2YMult = str2double(query(dpo,’WFMOutpre:YMult?’)); % Returns vertical scale factor

Ch2Yoff = -Ch2VPos*Ch2Scale; % Calculate offset from zero

fprintf(dpo,’Horizontal:Position %i’, Ch2HPos); % Places signal at designated horizontal location

end

fprintf(’Done!\n’);

%% ACQUIRE DATA

sets=nSets;

acq_time(sets) = zeros;

ask_time(sets) = zeros;

read_time(sets) = zeros;

save_time(sets) = zeros;

%tic % Start run time clock

if strcmpi(’on’,Ch1_status)

Ch1 = zeros(nRecord,nFrames);

end

if strcmpi(’on’,Ch2_status)

Ch2 = zeros(nRecord,nFrames);

end

for i=1:sets

tic;

fprintf(dpo,’Acquire:StopAfter Sequence’); % Stop acquiring after FastFrame acquisition

fwrite(dpo,’ACQ:STATE 1’); % Turn on acquisition

fprintf(’Acquiring data set #%i........’, i);

dpo.Timeout = 1000; % Adjust MATLAB timeout so it is longer than the acquisition duration

query(dpo,’*opc?’); % Will return "1" when the acquistion is complete - used to sync curve command

dpo.Timeout = 10; % Decrease timeout time now that the acquisition is done

fprintf(’Done!\n’);

acq_time(i) = toc;

fprintf(’ Asking for waveforms....’);

fwrite(dpo, ’curve?’); % Ask for waveforms - waveform preamble and binary data will be stored in memory

fprintf(’Done!\n’);

ask_time(i) = toc - acq_time(i);

fprintf(’ Reading waveforms....’);

fread(dpo,1); % Read and throw away first character in preamble - should be a "#"

bytes = str2double(char((fread(dpo,1)))); % Read and store the number of bytes in memory

fread(dpo, bytes); % Read and throw away the appropriate number of characters remaining in the preamble

header = (1+1+bytes);

if strcmpi(’on’,Ch1_status)

raw1 = fread(dpo, record*frames,’int8’); % Read and store all of the waveform data - no separation

between individual waveforms

end

if strcmpi(’on’,Ch2_status)

raw2 = fread(dpo, record*frames,’int8’); % Read and store all of the waveform data - no separation

between individual waveforms

end

fprintf(’Done!\n’);

fread(dpo,1); % Read and throw away the termination character that Curve? adds

read_time(i) = toc - ask_time(i);
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start = 1;

stop = nRecord;

for j=1:frames %(Originally j=1:record)

if strcmpi(’on’,Ch1_status)

Ch1(1:record, j) = raw1(start:stop);

end

if strcmpi(’on’,Ch2_status)

Ch2(1:record, j) = raw2(start:stop);

end

start = stop+1;

stop = start+record-1;

end

if strcmpi(’on’,Ch1_status)

Ch1 = (Ch1YMult*Ch1+Ch1Yoff); % Apply scale and offset to match the physical voltage values

savename = [’Ch1_’ num2str(i) ’.mat’]; % name the current batch of waveforms

save(savename,’Ch1’) % save the current batch of waveforms

end

if strcmpi(’on’,Ch2_status)

Ch2 = (Ch2YMult*Ch2+Ch2Yoff); % Apply scale and offset to match the physical voltage values

savename = [’Ch2_’ num2str(i) ’.mat’]; % name the current batch of waveforms

save(savename,’Ch2’) % save the current batch of waveforms

end

save_time(i) = toc - read_time(i);

end

fprintf(’********** %i waveforms recorded! **********\n’, sets*frames);

timeElapsed = toc % End run time clock

fprintf(’\nacq_time = %4.4f [sec]’,mean(acq_time))

fprintf(’\nask_time = %4.4f [sec]’,mean(ask_time))

fprintf(’\nread_time = %4.4f [sec]’,mean(read_time))

fprintf(’\nsave_time = %4.4f [sec]\n’,mean(save_time))

fclose(dpo);
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Appendix C. Hamamatsu H3378-50 PMT Specifications

Two H3378-50s photomultipler tubes were used until one was damaged beyond

repair. The advantage of these this PMT over the SiPMTs (MPPCs) is that they

are better suited for applications requiring low-noise, high-sensitivity detection of

light that is not collimated precisely. Tables 13, 14, and 15 provide the H3378-50

PMT’s assembly, cathode, and anode specifications, respectively. Figure 42 provides

a depiction of a typical Hamamatsu cylindrical PMT module.

Table 13. Hamamatsu photomultiplier tube H3378-50 assembly characteristics. The
photocathode material for this PMT is bialkali (Sb-Rb-Cs or Sb-K-Cs) and the window
material is quartz (synthetic silica). This information was reproduced with permission
from Hamamatsu [20].

Dia. Gain Supply Max Supply Divider Dim.
(mm) Voltage (V ) Voltage (V ) Current (mA) (mm)

51 2.5×106 3000 3500 0.52 φ60× 200

Table 14. Hamamatsu photomultiplier tube H3378-50 cathode characteristics. This
information was reproduced with permission from Hamamatsu [21].

Luminous Blue Sensitivity Index Radiant
(µA/lm) (CS 5-58) (mA/W)

80 10.0 80

Figure 42. A typical Hamamatsu cylindrical PMT module which closely resembles the
H3378-50 PMT. The figure is reproduced with permission from Hamamatsu [20].
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Appendix D. Scintillation Yield Script

%Written by 2d Lt Paul A. Clement

%27 February 2012

%Photon Parametric Study

close all

clear all

clc

% Start Clock

tic;

fprintf(’\nParametric Study Has Started...\n’)

%% Definitions

fiber_length = 1; % [cm] length of fiber

travel = 30/2; % [cm] distance traveled to photosensor (hits middl

E_n = (0:1:2.5E3); % [keV] Neutron Energy

photon_gen = 8; % [Photons/keV]

attn_length = 270; % [cm]

quench = 1.0; % [Unitless]

trap_eff = 0.0344; % [Unitless]

quan_eff_25C = 0.25; % [Unitless]

quan_eff_50C = 0.48; % [Unitless]

quan_eff_100C = 0.74; % [Unitless]

%% Program

photon_25C = 0.5*E_n.*photon_gen*exp(-travel/attn_length)*quench*trap_eff*quan_eff_25C; % [Photons]

photon_50C = 0.5*E_n.*photon_gen*exp(-travel/attn_length)*quench*trap_eff*quan_eff_50C; % [Photons]

photon_100C = 0.5*E_n.*photon_gen*exp(-travel/attn_length)*quench*trap_eff*quan_eff_100C; % [Photons]

figure(1)

plot(E_n,photon_25C,’r-’,’linewidth’,3)

hold on

plot(E_n,photon_50C,’b-’,’linewidth’,3)

plot(E_n,photon_100C,’g-’,’linewidth’,3)

xlabel(’Energy Deposited by a Neutron, E_n [keV]’,’fontsize’,20);

ylabel(’Photons Collected a Single SiPM MPPC [#]’,’fontsize’,20);

%title(’Photons Collected After Incident Neutron Interaction’,’fontsize’,20);

legend(’Hamamatsu S10362-11-025C’,’Hamamatsu S10362-11-050C’,...

’Hamamatsu S10362-11-100C’,’fontsize’,20,’location’,’northwest’);

set(gca,’box’,’on’,’xgrid’,’on’,’ygrid’,’on’,’fontsize’,20);

set(figure(1),’units’,’normalize’,’outerposition’,[0 0 1 1]);

%% Final Output

% Stop Clock

elapsed_time = toc;

fprintf(’\nParametric Study took %1.3f [s]\n’,elapsed_time)
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Appendix E. Spatial and Timing Resolution Uncertainty
Script

% Written by Maj Ben Kowash

% Revised and Studies by 2d Lt Paul A. Clement

% 27 February 2012

% TOF Parametric Study

close all

clear all

clc

% Start Clock

tic;

fprintf(’\nTOF Parametric Study Has Started...\n’)

%% Definitions

m_n = 1.008665*931.494*1.602E-13/(3E8)^2; % [kg] Mass of a Neutron

% Conversions

MeV_per_J = (1/1.602E-13); % (1 [MeV] / 1.602E-13 [J])

ns_per_s = (1E9/1); % (1E9 [ns] / 1 [s])

ps_per_s = (1E12/1); % (1E12 [ps] / 1 [s])

cm_per_m = (1E2/1); % (1E2 [cm] / 1 [m])

dz = 0.01:0.01:1; % [m]

dt = 0.1E-9:0.1E-9:10E-9; % [sec]

sigma_z = 0.001; % [m] Uncertainty in Position

sigma_t = 0.1E-9; % [sec] Uncertainty in Time

% Initialize

vel(length(dz),length(dt)) = zeros;

sigma_E(length(dz),length(dt)) = zeros;

E(length(dz),length(dt)) = zeros;

for i=1:length(dz)

for j=1:length(dt)

% Velocity (vel)

vel(i,j) = dz(i)./dt(j); % [m/s]

% Energy Uncertainty (sigma_E)

% (sigma_E)^2 = (dE/dz)^2*(sigma_z)^2 + (dE/dt)^2*(sigma_t)^2

% (dE/dz) = m_n*(dz/dt^2)

% (dE/dt) = -m_n*(dz^2/dt^3)

sigma_E(i,j) = sqrt((-m_n*dz(i)/dt(j)^2)^2 * sigma_z^2 ...

+ (m_n*dz(i)^2/dt(j)^3)^2 * sigma_t^2);

sigma_E(i,j) = sigma_E(i,j).*MeV_per_J; % [MeV]

% Energy (E)

E(i,j) = 0.5*m_n*(vel(i,j)^2).*MeV_per_J; % [MeV]

end

end

rel_error = sigma_E./E*100; % [%]

%% Plotting of Energy and Energy Uncertainty
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% Define Energy Plot Bounds

E_dz_min = 1; % [cm]

E_dz_max = 22; % [cm]

E_dz_ss = E_dz_max/11; % [cm] step size for Energy y-axis

E_dt_min = 10; % [ns] (x10)

E_dt_max = 100; % [ns] (x10)

E_dt_ss = E_dt_max/10; % [ns] (x10) step size for Energy x-axis

% Define Energy Uncertainty Bounds

sigma_E_dz_min = E_dz_min; % [cm]

sigma_E_dz_max = E_dz_max; % [cm]

sigma_E_dz_ss = sigma_E_dz_max/11; % [cm] step size for Energy Uncertainty x-axis

sigma_E_dt_min = E_dt_min; % [ns] (x10)

sigma_E_dt_max = E_dt_max; % [ns] (x10)

sigma_E_dt_ss = sigma_E_dt_max/10; % [ns] (x10) step size for Energy Uncertainty x-axis

figure(1)

% Energy

subplot(2,1,1)

[~,h] = contour(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

dz(:,E_dz_min:E_dz_max)*cm_per_m,...

E(E_dz_min:E_dz_max,E_dt_min:E_dt_max),100); %<-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% E(E_dz_min:E_dz_max,E_dt_min:E_dt_max) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% E(E_dz_min:E_dz_max,E_dt_min:E_dt_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[E_dt_min/10 E_dt_max/10],’xtick’,(E_dt_min/10:E_dt_ss/10:E_dt_max/10),...

’xticklabel’,(E_dt_min/10:E_dt_ss/10:E_dt_max/10),...

’ylim’,[E_dz_min E_dz_max],’ytick’,(E_dz_min:E_dz_ss:E_dz_max),...

’yticklabel’,(E_dz_min:E_dz_ss:E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))

%^--- ,’zlim’,(0 max(E(:)))

%set(h,’showtext’,’on’,’levellistmode’,’manual’,’textstep’,get(h,’levelstep’)*2)

title(’Energy’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy, E [MeV]’,’fontsize’,20)

colormap(’hot’)

title(colorbar,’Energy [MeV]’,’fontsize’,20)

% Energy Uncertainty

subplot(2,1,2)

[~,h] = contour(dt(:,sigma_E_dt_min:sigma_E_dt_max)*ns_per_s,...

dz(:,sigma_E_dz_min:sigma_E_dz_max)*cm_per_m,...

sigma_E(sigma_E_dz_min:sigma_E_dz_max,sigma_E_dt_min:sigma_E_dt_max),50);

%^-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max*cm_per_m),...

% sigma_E(E_dt_min:E_dt_max,E_dz_min:E_dz_max)) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% sigma_E(E_dt_min:E_dt_max,E_dz_min:E_dz_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[sigma_E_dt_min/10 sigma_E_dt_max/10],...

’xtick’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’xticklabel’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’ylim’,[sigma_E_dz_min sigma_E_dz_max],...

’ytick’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’yticklabel’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))
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%^--- ,’zlim’,(0 max(E(:))))

%set(h,’showtext’,’on’,’textstep’,get(h,’levelstep’)*10)

title(’Energy Uncertainty (\sigma_E)’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy Uncertainty, \sigma_E [MeV]’,’fontsize’,20)

colormap(’hot’)

colorbar

title(colorbar,’Energy [MeV]’,’fontsize’,20)

set(figure(1),’units’,’normalize’,’outerposition’,[0 0 1 1])

figure(2)

[~,h] = contour(dt(:,sigma_E_dt_min:sigma_E_dt_max)*ns_per_s,...

dz(:,sigma_E_dz_min:sigma_E_dz_max)*cm_per_m,...

rel_error(sigma_E_dz_min:sigma_E_dz_max,sigma_E_dt_min:sigma_E_dt_max),25);

%^-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max*cm_per_m),...

% rel_error(E_dt_min:E_dt_max,E_dz_min:E_dz_max)) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% rel_error(E_dt_min:E_dt_max,E_dz_min:E_dz_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[sigma_E_dt_min/10 sigma_E_dt_max/10],...

’xtick’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’xticklabel’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’ylim’,[sigma_E_dz_min sigma_E_dz_max],...

’ytick’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’yticklabel’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))

%^--- ,’zlim’,(0 max(E(:))))

set(h,’showtext’,’on’,’textstep’,get(h,’levelstep’)*100)

%title(’$\left(\frac{\sigma_E}{E}\right)\cdot 100$’,’interpreter’,’latex’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy Uncertainty, \sigma_E [MeV]’,’fontsize’,20)

colormap(’hot’)

colorbar

title(colorbar,’Percent Uncertainty [%]’,’fontsize’,20)

set(figure(2),’units’,’normalize’,’outerposition’,[0 0 1 1])

%%

E_2500keV = E;

E_2500keV(E_2500keV > 3.5) = 3.5;

sigma_E_2500keV = sigma_E;

sigma_E_2500keV(sigma_E_2500keV > 0.1) = 0.1;

rel_error_2500keV = sigma_E_2500keV./E_2500keV*100; % [%]

figure(3)

% Energy

subplot(2,1,1)

[~,h] = contour(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

dz(:,E_dz_min:E_dz_max)*cm_per_m,...

E_2500keV(E_dz_min:E_dz_max,E_dt_min:E_dt_max),50); %<-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% E_2500keV(E_dz_min:E_dz_max,E_dt_min:E_dt_max)) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...
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% E_2500keV(E_dz_min:E_dz_max,E_dt_min:E_dt_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[E_dt_min/10 E_dt_max/10],’xtick’,(E_dt_min/10:E_dt_ss/10:E_dt_max/10),...

’xticklabel’,(E_dt_min/10:E_dt_ss/10:E_dt_max/10),...

’ylim’,[E_dz_min E_dz_max],’ytick’,(E_dz_min:E_dz_ss:E_dz_max),...

’yticklabel’,(E_dz_min:E_dz_ss:E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))

%^--- ,’zlim’,(0 max(E(:)))

%set(h,’showtext’,’on’,’levellistmode’,’manual’,’textstep’,get(h,’levelstep’)*2)

title(’Energy’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy, E [MeV]’,’fontsize’,20)

colormap(’hot’)

title(colorbar,’Energy [MeV]’,’fontsize’,20)

% Energy Uncertainty

subplot(2,1,2)

[~,h] = contour(dt(:,sigma_E_dt_min:sigma_E_dt_max)*ns_per_s,...

dz(:,sigma_E_dz_min:sigma_E_dz_max)*cm_per_m,...

sigma_E_2500keV(sigma_E_dz_min:sigma_E_dz_max,sigma_E_dt_min:sigma_E_dt_max),50);

% ^-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max*cm_per_m),...

% sigma_E_2500keV(E_dt_min:E_dt_max,E_dz_min:E_dz_max)) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% sigma_E_2500keV(E_dt_min:E_dt_max,E_dz_min:E_dz_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[sigma_E_dt_min/10 sigma_E_dt_max/10],...

’xtick’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’xticklabel’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’ylim’,[sigma_E_dz_min sigma_E_dz_max],...

’ytick’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’yticklabel’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))

%^--- ,’zlim’,(0 max(E(:))))

%set(h,’showtext’,’on’,’textstep’,get(h,’levelstep’)*10)

title(’Energy Uncertainty (\sigma_E)’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy Uncertainty, \sigma_E [MeV]’,’fontsize’,20)

colormap(’hot’)

colorbar

title(colorbar,’Energy [MeV]’,’fontsize’,20)

set(figure(3),’units’,’normalize’,’outerposition’,[0 0 1 1])

figure(4)

[~,h] = contour(dt(:,sigma_E_dt_min:sigma_E_dt_max)*ns_per_s,...

dz(:,sigma_E_dz_min:sigma_E_dz_max)*cm_per_m,...

rel_error_2500keV(sigma_E_dz_min:sigma_E_dz_max,sigma_E_dt_min:sigma_E_dt_max),25);

%^-- uncomment for contour

%pcolor(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max*cm_per_m),...

% rel_error(E_dt_min:E_dt_max,E_dz_min:E_dz_max)) %<-- uncomment for pcolor

%mesh(dt(:,E_dt_min:E_dt_max)*ns_per_s,...

% dz(:,E_dz_min:E_dz_max)*cm_per_m,...

% rel_error_2500keV(E_dt_min:E_dt_max,E_dz_min:E_dz_max),’facecolor’,’interp’) %<-- uncomment for mesh

set(gca,’fontsize’,20,...

’xlim’,[sigma_E_dt_min/10 sigma_E_dt_max/10],...

’xtick’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’xticklabel’,(sigma_E_dt_min/10:sigma_E_dt_ss/10:sigma_E_dt_max/10),...

’ylim’,[sigma_E_dz_min sigma_E_dz_max],...

’ytick’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...
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’yticklabel’,(sigma_E_dz_min:sigma_E_dz_ss:sigma_E_dz_max),...

’zlim’,[0 3],’ztick’,(0:0.1:3),’zticklabel’,(0:0.2:3))

%^--- ,’zlim’,(0 max(E(:))))

set(h,’showtext’,’on’,’textstep’,get(h,’levelstep’)*100)

%title(’$\left(\frac{\sigma_E}{E}\right)\cdot 100$’,’interpreter’,’latex’,’fontsize’,20)

xlabel(’Time, dt [ns]’,’fontsize’,20)

ylabel(’Position, dz [cm]’,’fontsize’,20)

zlabel(’Energy Uncertainty, \sigma_E [MeV]’,’fontsize’,20)

colormap(’hot’)

colorbar

title(colorbar,’Percent Uncertainty [%]’,’fontsize’,20)

set(figure(4),’units’,’normalize’,’outerposition’,[0 0 1 1])

%% Final Output

% Stop Clock

elapsed_time = toc;

fprintf(’\nTOF Parametric Study took %1.3f [s]\n’,elapsed_time)
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Appendix F. Peak Counting (Dark Count) Script

%% Post Processing Peak Counting

close all

clear all

clc

% Start clock

tic;

% File information

total_files = 1950;

max_of_pulse = [zeros];

n = 1000;

peak_count = 0;

% Corrections

voltage_shift = 0.00;

% e_charge = 1.602*10^(-19);

% SiPM_gain = 2.75*10^5;

% preamp_gain = 100;

%

% Q = e_charge*SiPM_gain*preamp_gain;

% C = 110*10^(-12);

%

% photon_pulse_height = Q/C;

photon_pulse_height = 0.100; % [V]

% Loop to load all sets of waveforms

for i = 1:total_files

% Load each waveform set

Waveforms = load([’J:\Masters Thesis\New Experiments\Aluminum Box\Ch1\Ch1_’ num2str(i) ’.mat’]);

% % Plot Waveforms

% figure(1)

% hold on

% plot(Waveforms.Ch1(:,1000)+voltage_shift)

% title(’Waveforms’)

% xlabel(’Channel # [1 ns/pt]’)

% ylabel(’Voltage [V]’)

%SGWaveforms = sgolayfilt(Waveforms.Ch1(:,x)+voltage_shift,3,11);

% % Plot SGWaveforms

% figure(2)

% hold on

% plot(SGWaveforms)

% title(’SGWaveforms’)

% xlabel(’Channel # [1 ns/pt]’)

% ylabel(’Voltage [V]’)

for j = 1:1000

[zmax,imax,zmin,imin]= extrema(Waveforms.Ch1(:,j)+voltage_shift);

m = 1;

amp = 0;

amplitude(40,2E6) = zeros;

for k = 1:length(zmax)

if zmax(k,1) > photon_pulse_height

if imax(1,1) < imin(1,1)

if k > 1
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amp(m,1) = zmax(k,1) - zmin(k-1,1);

end

else

amp(m,1) = zmax(k,1) - zmin(k,1);

end

if amp(m,1) > photon_pulse_height

amplitude(m,(j+(i*1000)-1000)) = amp(m,1);

peak_count = peak_count + floor(amp(m,1)/photon_pulse_height);

end

m = m + 1;

end

end

end

% figure(1)

% plot(imax,zmax,’ro’)

% plot(imin,zmin,’go’)

% figure(2)

% plot(imax,zmax,’ro’)

% plot(imin,zmin,’go’)

% Percentage complete

fprintf(’\nLoading Waveforms is %4.2f %% complete’,i/total_files*100)

fprintf(’\nTime taken thus far is %4.1f [sec]’,toc)

fprintf(’\nTime remaining is ~ %4.1f [sec] or ~%4.1f [min]\n’, ...

toc/(i/total_files)-toc,(toc/(i/total_files)-toc)/60)

end

%% Final Output

% Plot histogram of Waveforms

figure(3)

hold on

hist(amplitude(:),1000)

title(’Histogram of Pulse Height at Trigger Point Ch1 Background’)

xlabel(’Voltage [V]’)

ylabel(’Counts’)

dark_count = peak_count/(20*total_files*1000)*10^(6);

fprintf(’\nThere are %1.0f dark counts\n’,dark_count)

% Stop clock

fprintf(’\nPost processing took %1.1f seconds\n’,toc)
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Appendix G. Fast Digital Data Acquisition Parameters

The fast digital data acquisition parameters for 1 and 10 waveforms per set is found

in Table 16. The fast digital data acquisition parameters for 100 and 1000 waveforms

per set is found in Table 17. In Tables 16 and 17, the first column provides the

frequency as it is increased from 0.1 to 5000 kHz. The next four columns are the

four separate functions within a single collection run, which are comprised of the

acquire, ask, read, and save times. The oscilloscope pulse count is the number of

pulses collected by the digital oscilloscope during the run. This is the same as the

number of collected pulses, (NCP ) located in Tables 11 and 12. The oscilloscope pulse

count column is calculated using Equation 34, where the number of sets (NS) is one.

The total pulse count column is the number of possible pulses, which is similar to the

number of possible pulses, (NPP ) located in Tables 11 and 12. Equation 35 is used to

calculate the total pulse counts, with one small difference. The difference is the total

pulse count column is calculated using only the acquire time, instead of the entire

collection time (i.e. all four function times added together). The fraction term is the

same as the fraction term in Tables 11 and 12 and is calculated using Equation 36. The

number of collected pulses (numerator) and number of possible pulses (denominator)

are substituted with the oscilloscope pulse count and total pulse count, respectively.
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